Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.1 Linear Approximation and Applications - Exercises - Page 172: 15

Answer

$$ -0.0267$$

Work Step by Step

Given $$y=\frac{10-x^{2}}{2+x^{2}}, \quad a=1, \quad d x=0.01 $$ Since \begin{align*} f^{\prime}(x)&=\frac{\left(2+x^{2}\right)(-2 x)-\left(10-x^{2}\right)(2 x)}{\left(2+x^{2}\right)^{2}}\\ &=-\frac{24 x}{\left(2+x^{2}\right)^{2}}\\ f'(1)&=\frac{-24}{9} \end{align*} Then \begin{align*} \Delta y&\approx f'(a) dx\\ &=\frac{-24}{9}(0.01)\\ &= -0.0267\end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.