Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.1 Linear Approximation and Applications - Exercises - Page 172: 10

Answer

$$-7.28,\ \ 0.32,\ \ 4.39 \%$$

Work Step by Step

Given $$f(x)=2 x^{2}-x, \quad a=5, \quad \Delta x=-0.4$$ Since $$ f'(x) = 4x-1 ,\ \ \ f'(3)=19 $$ Then \begin{align*} \Delta f &\approx f^{\prime}(a) \Delta x\\ &=(19)(-0.4)\\ &= -7.6 \end{align*} Since the change $\Delta f$ is given by \begin{align*} \Delta f&=f(a+\Delta x)-f(a)\\ &=f(4.6)-f(5)\\ &=37.72-45\\ & \approx -7.28 \end{align*} to find error $$|-7.28+7.6|=0.32$$ and the percentage $$\frac{0.32}{7.28} \times 100 \% \approx 4.39 \%$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.