Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.1 Linear Approximation and Applications - Exercises - Page 172: 20

Answer

$$0.001,\ \ \ 0.00101525 ,\ \ \ 0.000015254$$

Work Step by Step

Given $$\frac{1}{\sqrt{98}}-\frac{1}{10} $$ Consider $f(x)= \dfrac{1}{\sqrt{x} }$, $a= 100$, $\Delta x=-2$, since \begin{align*} f'(x) &= \frac{-1}{2}x^{-3/2}\\ f'(100)&=-0.0005 \end{align*} Then the linear approximation is given by \begin{align*} \Delta &f \approx f^{\prime}(a) \Delta x\\ &= (-0.0005)(-2)\\ &= 0.001 \end{align*} and the actual change is given by \begin{align*} \Delta f&=f(a+\Delta x)-f(a)\\ &=f(98)-f(100) \\ &\approx 0.00101525 \end{align*} Hence the error is $$|0.001-0.00101525|=0.000015254$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.