Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.1 Linear Approximation and Applications - Exercises - Page 172: 19

Answer

$$ -0.0005,\ \ \ -0.00049,\ \ \ 3.72 \times 10^{-6} $$

Work Step by Step

Given $$\frac{1}{\sqrt{101}}-\frac{1}{10}$$ Consider $f(x)= \dfrac{1}{\sqrt{x} }$, $a= 100$, $\Delta x= 1$, since \begin{align*} f'(x) &= \frac{-1}{2}x^{-3/2}\\ f'(100)&=-0.0005 \end{align*} Then the linear approximation is given by \begin{align*} \Delta &f \approx f^{\prime}(a) \Delta x\\ &= (-0.0005)(1)\\ &= -0.0005 \end{align*} and the actual change is given by \begin{align*} \Delta f&=f(a+\Delta x)-f(a)\\ &=f(101)-f(100) \\ &\approx -0.0004962809 \end{align*} Hence the error is $$ | -0.0005 +0.00049628 | \approx 3.72\times 10^{-6} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.