Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.5 Higher Derivatives - Exercises - Page 135: 26

Answer

$$g''(1)= \frac{-1}{8} $$

Work Step by Step

Given $$g(s)=\frac{\sqrt{s}}{s+1}$$ Since \begin{align*} g'(s) &= \frac{\frac{d}{ds}\left(\sqrt{s}\right)\left(s+1\right)-\frac{d}{ds}\left(s+1\right)\sqrt{s}}{\left(s+1\right)^2}\\ &= \frac{-s+1}{2\sqrt{s}\left(s+1\right)^2}\\ g''(s)&=\frac{1}{2}\cdot \frac{\frac{d}{ds}\left(-s+1\right)\sqrt{s}\left(s+1\right)^2-\frac{d}{ds}\left(\sqrt{s}\left(s+1\right)^2\right)\left(-s+1\right)}{\left(\sqrt{s}\left(s+1\right)^2\right)^2}\\ &= \frac{3s^2-6s-1}{4s\sqrt{s}\left(s+1\right)^3} \end{align*} Then $$g''(1)= \frac{-1}{8} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.