Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.5 Higher Derivatives - Exercises - Page 135: 21

Answer

$$\frac{d^4 x}{d t^4}|_{t=16}=\frac{3465}{256*2^{19}}$$

Work Step by Step

Since $=t^{-3/4}$, then $$\frac{d x}{d t}=-\frac{3}{4}t^{-7/4}, \quad \frac{d^2 x}{d t^2}=\frac{21}{16}t^{-11/4}, \quad \frac{d^3 x}{d t^3}=-\frac{231}{64}t^{-15/4} $$ and we get $\frac{d^4 x}{d t^4}=\frac{3465}{256}t^{-19/4}$. Hence, $$\frac{d^4 x}{d t^4}|_{t=16}=\frac{3465}{256*2^{19}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.