Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.6 Trigonometric Limits - Exercises - Page 77: 49

Answer

$$-1$$

Work Step by Step

Since $|x|=-x $ when $ x<0$, then we have \begin{align*} \lim _{x \rightarrow 0^-} \frac{\sin x}{|x|}&= \lim _{x \rightarrow 0} \frac{\sin x}{-x}\\ &= (-1) \lim _{x \rightarrow 0} \frac{\sin x}{x}\\ &=-1. \end{align*} Where we used Theorem 2 -- that is, $\lim _{x\rightarrow 0}\frac{ \sin x}{ x}=1$ .
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.