Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.6 Trigonometric Limits - Exercises - Page 77: 47

Answer

$$0$$

Work Step by Step

\begin{align*} \lim _{\theta \rightarrow 0} \frac{ \cos 2\theta -\cos \theta }{ \theta}&= \lim _{\theta \rightarrow 0} \frac{ 1-2\sin^2\theta -\cos \theta }{ \theta}\\ &=\lim _{\theta \rightarrow 0} \left( \frac{ 1 -\cos \theta }{ \theta} - \frac{ 2\sin^2\theta }{ \theta}\right)\\ &= \lim _{\theta \rightarrow 0} \frac{ 1 -\cos \theta }{ \theta} -\lim _{\theta \rightarrow 0} \frac{ 2\sin^2\theta }{ \theta} \\ &= \lim _{\theta \rightarrow 0} \frac{ 1 -\cos \theta }{ \theta} -2\lim _{\theta \rightarrow 0} \frac{ \sin \theta }{ \theta} \lim _{\theta \rightarrow 0} \sin\theta \\ &=0. \end{align*} Where we used Theorem 2 -- that is, $\lim _{x\rightarrow 0}\frac{ \sin x}{ x}=1$ and $\lim _{x\rightarrow 0}\frac{ 1-\cos x}{x}=0. $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.