Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.6 Trigonometric Limits - Exercises - Page 77: 24

Answer

$0$

Work Step by Step

\begin{align*} \lim _{\theta\rightarrow 0} \frac{ 1 -\cos \theta }{\sin\theta } &=\lim _{\theta\rightarrow 0} \frac{ 1 -\cos \theta }{\sin\theta } \frac{\theta}{\theta}\\ &= \lim _{\theta\rightarrow 0} \frac{ 1- \cos \theta }{\theta } \lim _{\theta\rightarrow 0} \frac{\theta}{\sin \theta}\\ &=0. \end{align*} Where we used the facts that $\lim _{\theta\rightarrow 0} \frac{ 1- \cos \theta }{\theta } =0$ and $\lim _{\theta\rightarrow 0} \frac{ \theta }{\sin \theta } =0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.