Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.6 Trigonometric Limits - Exercises - Page 77: 16

Answer

Use $l(t)=0, u(t)=3^{1/t}$ in the Squeeze Theorem.

Work Step by Step

Because the $sine$ function is bounded by $-1$ and $1$ we have: $$-1\leq\sin\left(\dfrac{1}{t}\right)\leq 1$$ As $\sin^2\left(\dfrac{1}{t}\right)\geq 0$, we have: $$0\leq\sin\left(\dfrac{1}{t}\right)\leq 1$$ We multiply both sides by $3^{1/t}$ (the inequality's signs remain the same because $3^{1/t}>0$): $$0\leq\sin\left(\dfrac{1}{t}\right)3^{1/t}\leq 3^{1/t}$$ Let's note: $$l(t)=0, u(t)=3^{1/t}$$ When $t\rightarrow 0^-$, the limits of the functions $l$ and $u$ are: $$\begin{align*} \lim_{t\rightarrow 0^-}l(t)&=\lim_{t\rightarrow 0^-}0=0\\ \lim_{t\rightarrow 0^-}u(t)&=\lim_{t\rightarrow 0^-}(3^{1/t})=0. \end{align*}$$ We have: $$\begin{align*} l(t)&\leq\sin^2\left(\dfrac{1}{t}\right)3^{1/t}\leq u(t)\\ \lim_{t\rightarrow 0^-}u(t)&=\lim_{t\rightarrow 0^-}u(t)=0. \end{align*}$$ Using the Squeeze Theorem we obtain: $$\lim_{t\rightarrow 0^-}\sin^2\left(\dfrac{1}{t}\right)3^{1/t}=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.