Answer
$$0$$
Work Step by Step
\begin{aligned}
\lim _{x \rightarrow 0+} \frac{\sqrt{x+1}-1}{\sqrt{x} \sqrt{x+1} }&=\lim _{x \rightarrow 0+} \frac{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}{\sqrt{x} \sqrt{x+1}(\sqrt{x+1}+1)}\\
&=\lim _{x \rightarrow 0+} \frac{x}{\sqrt{x} \sqrt{x+1}(\sqrt{x+1}+1)}\\
&=\lim _{x \rightarrow 0+} \frac{\sqrt{x}}{\sqrt{x+1}(\sqrt{x+1}+1)}\\
&=0
\end{aligned}