Answer
$f(x)=\frac{x^{2}-36}{x-6}$
$f(6)=\frac{6^{2}-36}{6-6}=\frac{0}{0}$
The function has the indeterminate form $\frac{0}{0}$ at x=6.
Transforming algebraically and canceling, we have
$\frac{x^{2}-36}{x-6}=\frac{(x-6)(x+6)}{x-6}=x+6$
Evaluating using continuity, we get
$\lim\limits_{x \to 6}\frac{x^{2}-36}{x-6}=\lim\limits_{x \to 6}(x+6)=6+6=12$
Work Step by Step
See the answer above.