Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.5 Evaluating Limits Algebraically - Exercises - Page 72: 24

Answer

$$\lim _{x \rightarrow 4} \frac{\sqrt{5-x}-1}{2-\sqrt{x}}=2$$

Work Step by Step

Given $$\lim _{x \rightarrow 4} \frac{\sqrt{5-x}-1}{2-\sqrt{x}}$$ let $$ f(x) = \frac{\sqrt{5-x}-1}{2-\sqrt{x}}$$ Since, we have $$ f(4)=\frac{1-1}{2-2}=\frac{0}{0}$$ So, transform algebraically and cancel \begin{aligned} L&= \lim _{x \rightarrow 4} \frac{\sqrt{5-x}-1}{2-\sqrt{x}} \\ &= \lim _{x \rightarrow 4} \frac{\sqrt{5-x}-1}{2-\sqrt{x}} \times \frac{\sqrt{5-x}+1}{\sqrt{5-x}+1}\\ &= \lim _{x \rightarrow 4} \frac{(\sqrt{5-x})^{2}-1^{2}}{(2-\sqrt{x})(\sqrt{5-x}+1)}\\ &= \lim _{x \rightarrow 4} \frac{5-x-1}{(2-\sqrt{x})(\sqrt{5-x}+1)}\\ &= \lim _{x \rightarrow 4} \frac{4-x}{(2-\sqrt{x})(\sqrt{5-x}+1)}\\ &= \lim _{x \rightarrow 4} \frac{2^{2}-(\sqrt{x})^{2}}{(2-\sqrt{x})(\sqrt{5-x}+1)}\\ &= \lim _{x \rightarrow 4} \frac{(2+\sqrt{x})(2-\sqrt{x})}{(2-\sqrt{x})(\sqrt{5-x}+1)}\\ &= \lim _{x \rightarrow 4} \frac{2+\sqrt{x}}{\sqrt{5-x}+1}\\ &= \frac{2+\sqrt{4}}{\sqrt{5-4}+1}\\ &= \frac{2+2}{\sqrt{1}+1}\\ &= \frac{4}{2}\\ &=2 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.