Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.5 Evaluating Limits Algebraically - Exercises - Page 72: 10

Answer

$$\lim _{h \rightarrow 0} \frac{(1+h)^3-1}{h}=3$$

Work Step by Step

Given $$\lim _{h \rightarrow 0} \frac{(1+h)^3-1}{h}$$ let $$ f(h) = \frac{(1+h)^3-1}{h}$$ Since, we have $$ f(0)=\frac{1-1}{0}=\frac{0}{0}$$ So, transform algebraically and cancel \begin{aligned} L&=\lim _{h \rightarrow 0} \frac{(1+h)^3-1}{h}\\ &= \lim _{h \rightarrow 0} \frac{1+3h^2+3h+h^3-1}{h}\\ &= \lim _{h \rightarrow 0} \frac{3h^2+3h+h^3}{h}\\ &= \lim _{h \rightarrow 0} \frac{h(3h+3+h^2)}{h}\\ &= \lim _{h \rightarrow 0}(3h+3+h^2)\\ &=0+3+0\\ &= 3 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.