Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.5 Evaluating Limits Algebraically - Exercises - Page 72: 22

Answer

$$\lim _{x \rightarrow 8} \frac{\sqrt{x-4}-2}{x-8} =\frac{1}{4} $$

Work Step by Step

Given $$\lim _{x \rightarrow 8} \frac{\sqrt{x-4}-2}{x-8}$$ let $$ f(x) = \lim _{x \rightarrow 8} \frac{\sqrt{x-4}-2}{x-8}$$ Since, we have $$ f(8)= \frac{\sqrt{8-4}-2}{8-8}=\frac{0}{0}$$ So, transform algebraically and cancel \begin{aligned}L&= \lim _{x \rightarrow 8} \frac{\sqrt{x-4}-2}{x-8} \\ &=\lim _{x \rightarrow 4} \frac{\sqrt{x-4}-2}{x-8} \times \frac{\sqrt{x-4}+2}{\sqrt{x-4}+2}\\ &=\lim _{x \rightarrow 4} \frac{(\sqrt{x-4})^{2}-2^{2}}{(x-8)(\sqrt{x-4}+2)}\\ &= \lim _{x \rightarrow 4} \frac{(x-4-4)}{(x-8)(\sqrt{x-4}+2)}\\ &=\lim _{x \rightarrow 4} \frac{(x-8)}{(x-8)(\sqrt{x-4}+2)} \\ &=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x-4}+2} \\ &=\frac{1}{\sqrt{8-4}+2} \\ &=\frac{1}{\sqrt{4}+2} \\ &=\frac{1}{2+2}\\ &=\frac{1}{4} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.