Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 872: 29

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}V $ $= \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{y = - \sqrt {1 - {x^2}} }^{\sqrt {1 - {x^2}} } \mathop \smallint \limits_{z = \sqrt {{x^2} + {y^2}} }^1 f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$

Work Step by Step

We have the solid region given by ${\cal W} = \left\{ {\left( {x,y,z} \right):\sqrt {{x^2} + {y^2}} \le z \le 1} \right\}$ The description of ${\cal W}$ implies that this is a $z$-simple region bounded below by $z = \sqrt {{x^2} + {y^2}} $ and bounded above by $z=1$. To express $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}V$ as an iterated integral in the order $dzdydx$ we project ${\cal W}$ onto the $xy$-plane to obtain the domain ${\cal D}$. From Figure 16 and the figure attached, we see that ${\cal D}$ is a disk of radius $1$, that is, ${x^2} + {y^2} = 1$. Notice that ${\cal D}$ is both vertically simple and horizontally simple region. To have integral with $dzdydx$ order we choose to describe ${\cal D}$ as a vertically simple region: ${\cal D} = \left\{ {\left( {x,y} \right)| - 1 \le x \le 1, - \sqrt {1 - {x^2}} \le y \le \sqrt {1 - {x^2}} } \right\}$ Thus, the triple integral equals to the iterated integral: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}V $ $= \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{y = - \sqrt {1 - {x^2}} }^{\sqrt {1 - {x^2}} } \mathop \smallint \limits_{z = \sqrt {{x^2} + {y^2}} }^1 f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.