Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 871: 28

Answer

(a) $xy$-plane $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 2x}^2 \mathop \smallint \limits_{z = 0}^{2 - y} z{\rm{d}}z{\rm{d}}y{\rm{d}}x = \frac{1}{3}$ (b) $yz$-plane $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = \mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{z = 0}^{2 - y} \mathop \smallint \limits_{x = 0}^{y/2} z{\rm{d}}x{\rm{d}}z{\rm{d}}y = \frac{1}{3}$ (c) $xz$-plane $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{z = 0}^{2 - 2x} \mathop \smallint \limits_{y = 2x}^{2 - z} z{\rm{d}}y{\rm{d}}z{\rm{d}}x = \frac{1}{3}$ The three answers agree.

Work Step by Step

We have the region ${\cal W}$ bounded by $y+z=2$, ${\ \ \ }$ $2x=y$, ${\ \ \ }$ $x=0$, ${\ \ \ }$ and $z=0$ (a) Projecting ${\cal W}$ onto the $xy$-plane we obtain the domain ${\cal D}$, which is both vertically and horizontally simple region. From Figure 15 and the figure attached, we notice that ${\cal D}$ is bounded by the line $2x=y$. We choose to describe ${\cal D}$ as a vertically simple region, so the domain description is ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,2x \le y \le 2} \right\}$ Thus, the region ${\cal W}$ consists of all points lying between ${\cal D}$ and the upper face $y+z=2$. That is, the $z$-coordinate satisfies $0 \le z \le 2 - y$. So, the region description of ${\cal W}$ is ${\cal W} = \left\{ {\left( {x,y,z} \right)|0 \le x \le 1,2x \le y \le 2,0 \le z \le 2 - y} \right\}$ So, the triple integral of $f\left( {x,y,z} \right) = z$ is $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 2x}^2 \mathop \smallint \limits_{z = 0}^{2 - y} z{\rm{d}}z{\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 2x}^2 \left( {{z^2}|_0^{2 - y}} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 2x}^2 \left( {4 - 4y + {y^2}} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \left( {\left( {4y - 2{y^2} + \frac{1}{3}{y^3}} \right)|_{2x}^2} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \left( {\frac{8}{3} - 8x + 8{x^2} - \frac{8}{3}{x^3}} \right){\rm{d}}x$ $ = \frac{1}{2}\left( {\frac{8}{3}x - 4{x^2} + \frac{8}{3}{x^3} - \frac{2}{3}{x^4}} \right)|_0^1$ $ = \frac{1}{2}\left( {\frac{8}{3} - 4 + \frac{8}{3} - \frac{2}{3}} \right) = \frac{1}{3}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 2x}^2 \mathop \smallint \limits_{z = 0}^{2 - y} z{\rm{d}}z{\rm{d}}y{\rm{d}}x = \frac{1}{3}$. (b) Projecting ${\cal W}$ onto the $yz$-plane we obtain the domain ${\cal T}$, which is both vertically and horizontally simple region. From Figure 15 and the figure attached, we notice that ${\cal T}$ is bounded by the line $z=2-y$. We choose to describe ${\cal T}$ as a vertically simple region, so the domain description is ${\cal T} = \left\{ {\left( {y,z} \right)|0 \le y \le 2,0 \le z \le 2 - y} \right\}$ Thus, the region ${\cal W}$ consists of all points lying between ${\cal T}$ and the left face $2x=y$. That is, the $x$-coordinate satisfies $0 \le x \le \frac{y}{2}$. So, the region description of ${\cal W}$ is ${\cal W} = \left\{ {\left( {x,y,z} \right)|0 \le y \le 2,0 \le z \le 2 - y,0 \le x \le \frac{y}{2}} \right\}$ So, the triple integral of $f\left( {x,y,z} \right) = z$ is $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = \mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{z = 0}^{2 - y} \mathop \smallint \limits_{x = 0}^{y/2} z{\rm{d}}x{\rm{d}}z{\rm{d}}y$ $ = \mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{z = 0}^{2 - y} z\left( {x|_0^{y/2}} \right){\rm{d}}z{\rm{d}}y$ $ = \frac{1}{2}\mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{z = 0}^{2 - y} yz{\rm{d}}z{\rm{d}}y$ $ = \frac{1}{4}\mathop \smallint \limits_{y = 0}^2 y\left( {{z^2}|_0^{2 - y}} \right){\rm{d}}y$ $ = \frac{1}{4}\mathop \smallint \limits_{y = 0}^2 y\left( {4 - 4y + {y^2}} \right){\rm{d}}y$ $ = \frac{1}{4}\left( {2{y^2} - \frac{4}{3}{y^3} + \frac{1}{4}{y^4}} \right)|_0^2$ $ = \frac{1}{4}\left( {8 - \frac{{32}}{3} + 4} \right)$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = \mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{z = 0}^{2 - y} \mathop \smallint \limits_{x = 0}^{y/2} z{\rm{d}}x{\rm{d}}z{\rm{d}}y = \frac{1}{3}$. (c) Projecting ${\cal W}$ onto the $xz$-plane we obtain the domain ${\cal S}$, which is both vertically and horizontally simple region. From Figure 15 and the figure attached, we notice that ${\cal S}$ is bounded by the line $z=2-2x$. We choose to describe ${\cal S}$ as a vertically simple region, so the domain description is ${\cal S} = \left\{ {\left( {x,z} \right)|0 \le x \le 1,0 \le z \le 2 - 2x} \right\}$ We see from the Figure 15, ${\cal W}$ is bounded below by the left face $2x=y$ and bounded above by the upper face $y+z=2$. Thus, the $y$-coordinate satisfies $2x \le y \le 2 - z$. So, the region description of ${\cal W}$ is ${\cal W} = \left\{ {\left( {x,y,z} \right)|0 \le x \le 1,0 \le z \le 2 - 2x,2x \le y \le 2 - z} \right\}$ So, the triple integral of $f\left( {x,y,z} \right) = z$ is $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{z = 0}^{2 - 2x} \mathop \smallint \limits_{y = 2x}^{2 - z} z{\rm{d}}y{\rm{d}}z{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{z = 0}^{2 - 2x} z\left( {y|_{2x}^{2 - z}} \right){\rm{d}}z{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{z = 0}^{2 - 2x} z\left( {2 - z - 2x} \right){\rm{d}}z{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{z = 0}^{2 - 2x} \left( {2z - {z^2} - 2xz} \right){\rm{d}}z{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \left( {\left( {{z^2} - \frac{1}{3}{z^3} - x{z^2}} \right)|_0^{2 - 2x}} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \left( {{{\left( {2 - 2x} \right)}^2} - \frac{1}{3}{{\left( {2 - 2x} \right)}^3} - x{{\left( {2 - 2x} \right)}^2}} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \left( { - \frac{4}{3}{x^3} + 4{x^2} - 4x + \frac{4}{3}} \right){\rm{d}}x$ $ = \left( { - \frac{1}{3}{x^4} + \frac{4}{3}{x^3} - 2{x^2} + \frac{4}{3}x} \right)|_0^1$ $ = - \frac{1}{3} + \frac{4}{3} - 2 + \frac{4}{3} = \frac{1}{3}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{z = 0}^{2 - 2x} \mathop \smallint \limits_{y = 2x}^{2 - z} z{\rm{d}}y{\rm{d}}z{\rm{d}}x = \frac{1}{3}$. The three answers agree.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.