Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 872: 42

Answer

$I \simeq 0.122434$ 1. Case $N=10$ ${S_{10,10,10}} \simeq 0.16185$ The error: $\left| {I - {S_{10,10,10}}} \right| \simeq 0.039416$. 2. Case $N=20$ ${S_{20,20,20}} \simeq 0.141272$ The error: $\left| {I - {S_{20,20,20}}} \right| \simeq 0.018838$. 3. Case $N=30$ ${S_{30,30,30}} \simeq 0.134802$ The error: $\left| {I - {S_{30,30,30}}} \right| \simeq 0.012368$.

Work Step by Step

We have $f\left( {x,y,z} \right) = \sin \left( {xyz} \right)$. Using a computer algebra system we calculate $I$ numerically: $I = \mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \sin \left( {xyz} \right){\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{z = 0}^1 \sin \left( {xyz} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$ $I \simeq 0.122434$ 1. Case $N=10$ The Riemann sum approximation becomes ${S_{10,10,10}} = \frac{1}{{{{10}^3}}}\mathop \sum \limits_{i = 1}^{10} \mathop \sum \limits_{j = 1}^{10} \mathop \sum \limits_{k = 1}^{10} f\left( {\frac{i}{{10}},\frac{j}{{10}},\frac{k}{{10}}} \right)$ Using a computer algebra system, we calculate ${S_{10,10,10}}$, the result is ${S_{10,10,10}} \simeq 0.16185$ The error: $\left| {I - {S_{10,10,10}}} \right| \simeq 0.039416$. 2. Case $N=20$ ${S_{20,20,20}} = \frac{1}{{{{20}^3}}}\mathop \sum \limits_{i = 1}^{20} \mathop \sum \limits_{j = 1}^{20} \mathop \sum \limits_{k = 1}^{20} f\left( {\frac{i}{{20}},\frac{j}{{20}},\frac{k}{{20}}} \right)$ ${S_{20,20,20}} \simeq 0.141272$ The error: $\left| {I - {S_{20,20,20}}} \right| \simeq 0.018838$. 3. Case $N=30$ ${S_{30,30,30}} = \frac{1}{{{{30}^3}}}\mathop \sum \limits_{i = 1}^{30} \mathop \sum \limits_{j = 1}^{30} \mathop \sum \limits_{k = 1}^{30} f\left( {\frac{i}{{30}},\frac{j}{{30}},\frac{k}{{30}}} \right)$ ${S_{30,30,30}} \simeq 0.134802$ The error: $\left| {I - {S_{30,30,30}}} \right| \simeq 0.012368$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.