Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 872: 41

Answer

1. Case $N=10$ ${S_{10,10,10}} \simeq 0.561054$ 2. Case $N=20$ ${S_{20,20,20}} \simeq 0.572576$ 3. Case $N=30$ ${S_{30,30,30}} \simeq 0.57649$ $I \simeq 0.584441$ For $N=60$, ${S_{60,60,60}}$ approximates $I$ to two decimal places.

Work Step by Step

We have $f\left( {x,y,z} \right) = {{\rm{e}}^{{x^2} - y - z}}$. 1. Case $N=10$ The Riemann sum approximation becomes ${S_{10,10,10}} = \frac{1}{{{{10}^3}}}\mathop \sum \limits_{i = 1}^{10} \mathop \sum \limits_{j = 1}^{10} \mathop \sum \limits_{k = 1}^{10} f\left( {\frac{i}{{10}},\frac{j}{{10}},\frac{k}{{10}}} \right)$ Using a computer algebra system, we calculate ${S_{10,10,10}}$, the result is ${S_{10,10,10}} \simeq 0.561054$ 2. Case $N=20$ ${S_{20,20,20}} = \frac{1}{{{{20}^3}}}\mathop \sum \limits_{i = 1}^{20} \mathop \sum \limits_{j = 1}^{20} \mathop \sum \limits_{k = 1}^{20} f\left( {\frac{i}{{20}},\frac{j}{{20}},\frac{k}{{20}}} \right)$ ${S_{20,20,20}} \simeq 0.572576$ 3. Case $N=30$ ${S_{30,30,30}} = \frac{1}{{{{30}^3}}}\mathop \sum \limits_{i = 1}^{30} \mathop \sum \limits_{j = 1}^{30} \mathop \sum \limits_{k = 1}^{30} f\left( {\frac{i}{{30}},\frac{j}{{30}},\frac{k}{{30}}} \right)$ ${S_{30,30,30}} \simeq 0.57649$ Using a computer algebra system, we evaluate $I$: $I = \mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 {{\rm{e}}^{{x^2} - y - z}}{\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{z = 0}^1 {{\rm{e}}^{{x^2} - y - z}}{\rm{d}}z{\rm{d}}y{\rm{d}}x$ $I \simeq 0.584441$ To find an $N$ such that ${S_{N,N,N}}$ approximates $I$ to two decimal places, we increase the value of $N$ and found that for $N=60$, ${S_{60,60,60}} \simeq 0.580444$. Thus, for $N=60$, ${S_{60,60,60}}$ approximates $I$ to two decimal places.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.