Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 872: 44

Answer

${A_8} \simeq 4.059$ ${A_9} \simeq 3.298$ ${A_{10}} \simeq 2.55$ We show that ${C_n} \le 1$ for $n \ge 6$ and that of all unit balls, the five-dimensional ball has the largest volume. Using the formulas for the volume ${A_n}$ of the unit ball, we show that ${A_n} \to 0$ as $n \to \infty $.

Work Step by Step

We have the formulas for the volume ${A_n}$ of the unit ball in ${\mathbb{R}^n}$ given by ${A_{2m}} = \frac{{{\pi ^m}}}{{m!}}$, ${\ \ \ \ \ }$ ${A_{2m + 1}} = \frac{{{2^{m + 1}}{\pi ^m}}}{{1\cdot3\cdot5\cdot\cdot\cdot\left( {2m + 1} \right)}}$ So, ${A_8} = {A_{2\cdot4}} = \frac{{{\pi ^4}}}{{4!}} \simeq 4.059$ ${A_9} = {A_{2\cdot4 + 1}} = \frac{{{2^{4 + 1}}{\pi ^4}}}{{1\cdot3\cdot5\cdot\cdot\cdot\left( {2\cdot4 + 1} \right)}} = \frac{{{2^{4 + 1}}{\pi ^4}}}{{1\cdot3\cdot5\cdot7\cdot9}} \simeq 3.298$ ${A_{10}} = {A_{2\cdot5}} = \frac{{{\pi ^5}}}{{5!}} \simeq 2.55$ Using the definition ${C_n} = \mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^n}\theta {\rm{d}}\theta $ we compute ${C_0}$ and ${C_1}$: ${C_0} = \mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^0}\theta {\rm{d}}\theta = \left( {\theta |_{ - \pi /2}^{\pi /2}} \right)$ ${C_0} = \pi $ ${C_1} = \mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^1}\theta {\rm{d}}\theta = \left( {\sin \theta |_{ - \pi /2}^{\pi /2}} \right)$ ${C_1} = 2$ Using Eq. (6) we compute the volume ${V_1}\left( r \right)$ and ${V_2}\left( r \right)$: ${V_n}\left( r \right) = {A_n}{r^n}$ ${V_1}\left( r \right) = {A_1}r$, ${\ \ \ \ \ }$ ${V_2}\left( r \right) = {A_2}{r^2}$ Since ${V_1}\left( r \right) = 2r$ and ${V_2}\left( r \right) = \pi {r^2}$, so ${A_1} = 2$ and ${A_2} = \pi $. Using the results obtained above: ${C_0} = \pi $, ${C_1} = 2$, ${A_1} = 2$, ${A_2} = \pi $, Eq. (7) and Eq. (8), we generate a table for some values of ${C_n} = \left( {\frac{{n - 1}}{n}} \right){C_{n - 2}}$ and ${A_n} = {A_{n - 1}}{C_n}$: $\begin{array}{*{20}{c}} n&0&1&2&3&4&5&6&7&8&9\\ {{C_n}}&\pi &2&{1.57}&{1.33}&{1.18}&{1.07}&{0.98}&{0.91}&{0.86}&{0.81}\\ {{A_n}}& - &2&\pi &{4.19}&{4.93}&{5.26}&{5.17}&{4.72}&{4.059}&{3.299} \end{array}$ The table above shows that ${C_n} \le 1$ for $n \ge 6$ and that of all unit balls, the five-dimensional ball has the largest volume. Since $\frac{{n - 1}}{n} < 1$, for $n = 1,2,...$, so ${C_n} < {C_{n - 1}}$. Therefore ${C_n} \to 0$ as $n \to \infty $. Recall from the formulas: ${A_{2m}} = \frac{{{\pi ^m}}}{{m!}}$, ${\ \ \ \ \ }$ ${A_{2m + 1}} = \frac{{{2^{m + 1}}{\pi ^m}}}{{1\cdot3\cdot5\cdot\cdot\cdot\left( {2m + 1} \right)}}$ Because the factorials in the denominators grow faster than the exponentials in the numerators, we conclude that ${A_n} \to 0$ as $n \to \infty $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.