Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 872: 37

Answer

The average value: $\bar f = \frac{1}{{2\pi }}$

Work Step by Step

We have $f\left( {x,y,z} \right) = xy\sin \left( {\pi z} \right)$ and ${\cal W} = \left[ {0,1} \right] \times \left[ {0,1} \right] \times \left[ {0,1} \right]$. So, the volume of ${\cal W}$ is 1. Using Eq. (5), the average value of $f$ is $\bar f = \frac{1}{{Volume\left( {\cal W} \right)}}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}V$ $ = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{z = 0}^1 xy\sin \left( {\pi z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$ $ = - \frac{1}{\pi }\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^1 xy\left( {\cos \left( {\pi z} \right)|_0^1} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{2}{\pi }\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^1 xy{\rm{d}}y{\rm{d}}x$ $ = \frac{1}{\pi }\mathop \smallint \limits_{x = 0}^1 x\left( {{y^2}|_0^1} \right){\rm{d}}x$ $ = \frac{1}{\pi }\mathop \smallint \limits_{x = 0}^1 x{\rm{d}}x$ $ = \frac{1}{{2\pi }}\left( {{x^2}|_0^1} \right) = \frac{1}{{2\pi }}$ Thus, the average value: $\bar f = \frac{1}{{2\pi }}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.