Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 871: 24

Answer

The domain of integration is described by: ${\cal W} = \left\{ {\left( {x,y.z} \right)|0 \le x \le 3,0 \le y \le \sqrt {9 - {x^2}} ,0 \le z \le \sqrt {9 - {x^2} - {y^2}} } \right\}$ The projection of ${\cal W}$ onto the $xy$-plane is the domain ${\cal D}$: ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 3,0 \le y \le \sqrt {9 - {x^2}} } \right\}$ $\mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = 0}^{\sqrt {9 - {x^2}} } \mathop \smallint \limits_{z = 0}^{\sqrt {9 - {x^2} - {y^2}} } xy{\rm{d}}z{\rm{d}}y{\rm{d}}x = \frac{{81}}{5}$

Work Step by Step

We have the triple integral: $\mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = 0}^{\sqrt {9 - {x^2}} } \mathop \smallint \limits_{z = 0}^{\sqrt {9 - {x^2} - {y^2}} } xy{\rm{d}}z{\rm{d}}y{\rm{d}}x$ From the order of the integral, we see that the solid region ${\cal W}$ is a $z$-simple region bounded below by the plane $z=0$ and bounded above by the sphere ${x^2} + {y^2} + {z^2} = 9$. Since $x \ge 0$, $y \ge 0$, $z \ge 0$, ${\cal W}$ is in the first octant. The projection of ${\cal W}$ onto the $xy$-plane is the domain ${\cal D}$ (a part of a disk of radius $3$ in the first quadrant), which is a vertically simple region defined by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 3,0 \le y \le \sqrt {9 - {x^2}} } \right\}$ So, the domain of integration: ${\cal W} = \left\{ {\left( {x,y.z} \right)|0 \le x \le 3,0 \le y \le \sqrt {9 - {x^2}} ,0 \le z \le \sqrt {9 - {x^2} - {y^2}} } \right\}$ Now, we evaluate the triple integral: $\mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = 0}^{\sqrt {9 - {x^2}} } \mathop \smallint \limits_{z = 0}^{\sqrt {9 - {x^2} - {y^2}} } xy{\rm{d}}z{\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = 0}^{\sqrt {9 - {x^2}} } xy\left( {z|_0^{\sqrt {9 - {x^2} - {y^2}} }} \right){\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = 0}^{\sqrt {9 - {x^2}} } xy\sqrt {9 - {x^2} - {y^2}} {\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^3 x\left( { - \frac{1}{3}{{\left( {9 - {x^2} - {y^2}} \right)}^{3/2}}|_0^{\sqrt {9 - {x^2}} }} \right){\rm{d}}x$ $ = - \frac{1}{3}\mathop \smallint \limits_{x = 0}^3 x\left( {{{\left( {9 - {x^2} - 9 + {x^2}} \right)}^{3/2}} - {{\left( {9 - {x^2}} \right)}^{3/2}}} \right){\rm{d}}x$ $ = \frac{1}{3}\mathop \smallint \limits_{x = 0}^3 x{\left( {9 - {x^2}} \right)^{3/2}}{\rm{d}}x$ $ = \frac{1}{3}\left( { - \frac{1}{5}{{\left( {9 - {x^2}} \right)}^{5/2}}|_0^3} \right)$ $ = - \frac{1}{{15}}\left( { - {9^{5/2}}} \right) = \frac{{81}}{5}$ Thus, $\mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = 0}^{\sqrt {9 - {x^2}} } \mathop \smallint \limits_{z = 0}^{\sqrt {9 - {x^2} - {y^2}} } xy{\rm{d}}z{\rm{d}}y{\rm{d}}x = \frac{{81}}{5}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.