Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 871: 27

Answer

$\begin{array}{*{20}{c}} {{\rm{Order}}}&{{\rm{Integral}}{\ }\left( {{\rm}} \right)}\\ {dzdxdy}&{\mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{x = 0}^{y/2} \mathop \smallint \limits_{z = 0}^{4 - {y^2}} xyz{\rm{d}}z{\rm{d}}x{\rm{d}}y}\\ {dxdydz}&{\mathop \smallint \limits_{z = 0}^4 \mathop \smallint \limits_{y = 0}^{\sqrt {4 - z} } \mathop \smallint \limits_{x = 0}^{y/2} xyz{\rm{d}}x{\rm{d}}y{\rm{d}}z}\\ {dydxdz}&{\mathop \smallint \limits_{z = 0}^4 \mathop \smallint \limits_{x = 0}^{\frac{1}{2}\sqrt {4 - z} } \mathop \smallint \limits_{y = 2x}^{\sqrt {4 - z} } xyz{\rm{d}}y{\rm{d}}x{\rm{d}}z} \end{array}$

Work Step by Step

1. Iterated integral order: $dzdxdy$ From Example 5 we obtain $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 2x}^2 \mathop \smallint \limits_{z = 0}^{4 - {y^2}} xyz{\rm{d}}z{\rm{d}}y{\rm{d}}x$ The order of the integral implies that ${\cal W}$ is a $z$-simple region. The projection of ${\cal W}$ onto the $xy$-plane is the domain ${\cal D}$, a vertically simple region defined by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,2x \le y \le 2} \right\}$ Notice that the lower boundary is the line $y=2x$. Referring to Figure 7 (A), we re-define ${\cal D}$ as a horizontally simple region. Using $y=2x$, the right boundary is the line $x = \frac{y}{2}$. So, the domain description becomes ${{\cal D}_1} = \left\{ {\left( {x,y} \right)|0 \le y \le 2,0 \le x \le \frac{y}{2}} \right\}$ Thus, the triple integral in $dzdxdy$ order: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_1}}^{} \left( {\mathop \smallint \limits_{z = 0}^{4 - {y^2}} xyz{\rm{d}}z} \right){\rm{d}}A$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{x = 0}^{y/2} \mathop \smallint \limits_{z = 0}^{4 - {y^2}} xyz{\rm{d}}z{\rm{d}}x{\rm{d}}y$ 2. Iterated integral order: $dxdydz$ From Example 5 we obtain $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{z = 0}^{4 - {y^2}} \mathop \smallint \limits_{x = 0}^{y/2} xyz{\rm{d}}x{\rm{d}}z{\rm{d}}y$ The order of the integral implies that ${\cal W}$ is a $x$-simple region. The projection of ${\cal W}$ onto the $yz$-plane is the domain ${\cal T}$, a vertically simple region defined by ${\cal T} = \left\{ {\left( {y,z} \right)|0 \le y \le 2,0 \le z \le 4 - {y^2}} \right\}$ Notice that the upper boundary is the curve $z = 4 - {y^2}$. Referring to Figure 7 (B), we re-define ${\cal T}$ as a horizontally simple region. Using $z = 4 - {y^2}$, the right boundary is the curve $y = \sqrt {4 - z} $. So, the domain description becomes ${{\cal T}_1} = \left\{ {\left( {y,z} \right)|0 \le z \le 4,0 \le y \le \sqrt {4 - z} } \right\}$ Thus, the triple integral in $dxdydz$ order: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal T}_1}}^{} \left( {\mathop \smallint \limits_{x = 0}^{y/2} xyz{\rm{d}}z} \right){\rm{d}}A$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \mathop \smallint \limits_{z = 0}^4 \mathop \smallint \limits_{y = 0}^{\sqrt {4 - z} } \mathop \smallint \limits_{x = 0}^{y/2} xyz{\rm{d}}x{\rm{d}}y{\rm{d}}z$ 3. Iterated integral order: $dydxdz$ From Example 5 we obtain $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{z = 0}^{4 - 4{x^2}} \mathop \smallint \limits_{y = 2x}^{\sqrt {4 - z} } xyz{\rm{d}}y{\rm{d}}z{\rm{d}}x$ The order of the integral implies that ${\cal W}$ is a $y$-simple region. The projection of ${\cal W}$ onto the $xz$-plane is the domain ${\cal S}$, a vertically simple region defined by ${\cal S} = \left\{ {\left( {x,z} \right)|0 \le x \le 1,0 \le z \le 4 - 4{x^2}} \right\}$ Notice that the upper boundary is the curve $z = 4 - 4{x^2}$. Referring to Figure 7 (C), we re-define ${\cal S}$ as a horizontally simple region. Using $z = 4 - 4{x^2}$, the right boundary is the curve $x = \frac{1}{2}\sqrt {4 - z} $. So, the domain description becomes ${{\cal S}_1} = \left\{ {\left( {x,z} \right)|0 \le z \le 4,0 \le x \le \frac{1}{2}\sqrt {4 - z} } \right\}$ Thus, the triple integral in $dydxdz$ order: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal S}_1}}^{} \left( {\mathop \smallint \limits_{y = 2x}^{\sqrt {4 - z} } xyz{\rm{d}}y} \right){\rm{d}}A$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \mathop \smallint \limits_{z = 0}^4 \mathop \smallint \limits_{x = 0}^{\frac{1}{2}\sqrt {4 - z} } \mathop \smallint \limits_{y = 2x}^{\sqrt {4 - z} } xyz{\rm{d}}y{\rm{d}}x{\rm{d}}z$ In summary: The triple integral $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V$ is equal to the following iterated integrals: $\begin{array}{*{20}{c}} {{\rm{Order}}}&{{\rm{Integral}}{\ }\left( {{\rm{Example{\ }5}}} \right)}\\ {dzdydx}&{\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 2x}^2 \mathop \smallint \limits_{z = 0}^{4 - {y^2}} xyz{\rm{d}}z{\rm{d}}y{\rm{d}}x}\\ {dxdzdy}&{\mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{z = 0}^{4 - {y^2}} \mathop \smallint \limits_{x = 0}^{y/2} xyz{\rm{d}}x{\rm{d}}z{\rm{d}}y}\\ {dydzdx}&{\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{z = 0}^{4 - 4{x^2}} \mathop \smallint \limits_{y = 2x}^{\sqrt {4 - z} } xyz{\rm{d}}y{\rm{d}}z{\rm{d}}x} \end{array}$ $\begin{array}{*{20}{c}} {{\rm{Order}}}&{{\rm{Integral}}{\ }\left( {{\rm{Exercise{\ }27}}} \right)}\\ {dzdxdy}&{\mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{x = 0}^{y/2} \mathop \smallint \limits_{z = 0}^{4 - {y^2}} xyz{\rm{d}}z{\rm{d}}x{\rm{d}}y}\\ {dxdydz}&{\mathop \smallint \limits_{z = 0}^4 \mathop \smallint \limits_{y = 0}^{\sqrt {4 - z} } \mathop \smallint \limits_{x = 0}^{y/2} xyz{\rm{d}}x{\rm{d}}y{\rm{d}}z}\\ {dydxdz}&{\mathop \smallint \limits_{z = 0}^4 \mathop \smallint \limits_{x = 0}^{\frac{1}{2}\sqrt {4 - z} } \mathop \smallint \limits_{y = 2x}^{\sqrt {4 - z} } xyz{\rm{d}}y{\rm{d}}x{\rm{d}}z} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.