Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 871: 26

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^{1 - x} \mathop \smallint \limits_{z = 1 - x - y}^{2 + {x^2} + {y^2}} f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$

Work Step by Step

We have a solid region ${\cal W}$ located below the paraboloid ${x^2} + {y^2} = z - 2$ and lies above the part of the plane $x+y+z=1$ in the first octant $x \ge 0$, $y \ge 0$, $z \ge 0$. From the figure attached, we see that ${\cal W}$ can be described as a $z$-simple region bounded below by the plane $x+y+z=1$ and bounded above by the paraboloid ${x^2} + {y^2} = z - 2$. Thus, $1 - x - y \le z \le 2 + {x^2} + {y^2}$ Referring to the figure attached, we see that the projection of ${\cal W}$ onto the $xy$-plane ($z=0$) is the domain ${\cal D}$ bounded by the line $x+y=1$ in the first quadrant. We choose to describe ${\cal D}$ as a vertically simple region defined by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,0 \le y \le 1 - x} \right\}$ Thus, the description of ${\cal W}$ is given by ${\cal W} = \left\{ {\left( {x,y,z} \right)|0 \le x \le 1,0 \le y \le 1 - x,1 - x - y \le z \le 2 + {x^2} + {y^2}} \right\}$ Now we write the triple integral $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}V$ as an iterated integral: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}V = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {\mathop \smallint \limits_{z = 1 - x - y}^{2 + {x^2} + {y^2}} f\left( {x,y,z} \right){\rm{d}}z} \right){\rm{d}}A$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^{1 - x} \mathop \smallint \limits_{z = 1 - x - y}^{2 + {x^2} + {y^2}} f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.