Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 871: 19

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = 2$

Work Step by Step

We have $f\left( {x,y,z} \right) = z$. Referring to Figure 13, we can consider the region ${\cal W}$ as a $x$-simple region. The projection of ${\cal W}$ onto the $yz$-plane is the domain ${\cal T}$ bounded by $y=4$, and the line $z = \frac{1}{4}y$. Thus, the domain description of ${\cal T}$ is given by ${\cal T} = \left\{ {\left( {x,y} \right)|0 \le y \le 4,0 \le z \le \frac{1}{4}y} \right\}$ The region ${\cal W}$ consists of all points lying between ${\cal T}$ and the front face $x=3$. Thus, the $x$-coordinate satisfies $0 \le x \le 3$. Thus, ${\cal W} = \left\{ {\left( {x,y,z} \right)|0 \le y \le 4,0 \le z \le \frac{1}{4}y,0 \le x \le 3} \right\}$ We evaluate the triple integral as an iterated integral: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} \left( {\mathop \smallint \limits_{x = 0}^3 z{\rm{d}}x} \right){\rm{d}}A$ $ = \mathop \smallint \limits_{y = 0}^4 \mathop \smallint \limits_{z = 0}^{y/4} z\left( {x|_0^3} \right){\rm{d}}z{\rm{d}}y$ $ = 3\mathop \smallint \limits_{y = 0}^4 \mathop \smallint \limits_{z = 0}^{y/4} z{\rm{d}}z{\rm{d}}y$ $ = \frac{3}{2}\mathop \smallint \limits_{y = 0}^4 \left( {{z^2}|_0^{y/4}} \right){\rm{d}}y$ $ = \frac{3}{{32}}\mathop \smallint \limits_{y = 0}^4 {y^2}{\rm{d}}y$ $ = \frac{1}{{32}}\left( {{y^3}|_0^4} \right) = 2$ Thus, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} z{\rm{d}}V = 2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.