Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 858: 4

Answer

Please see the figure attached. $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} y{\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \left( {\mathop \smallint \limits_{y = {x^2}}^{4 - {x^2}} y{\rm{d}}y} \right){\rm{d}}x = \frac{{20}}{3}$

Work Step by Step

The inequalities describe the domain ${\cal D}$ as a vertically simple region. Please see the figure attached. Next, we evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} y{\rm{d}}A$ as an iterated integral: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} y{\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \left( {\mathop \smallint \limits_{y = {x^2}}^{4 - {x^2}} y{\rm{d}}y} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \left( {\frac{1}{2}{y^2}|_{{x^2}}^{4 - {x^2}}} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \left( {{{\left( {4 - {x^2}} \right)}^2} - {x^4}} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_0^1 \left( {16 - 8{x^2}} \right){\rm{d}}x$ $ = \frac{1}{2}\left( {16x - \frac{8}{3}{x^3}} \right)|_0^1$ $ = \frac{1}{2}\left( {16 - \frac{8}{3}} \right) = \frac{{20}}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.