Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 858: 21

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = x}^{\sqrt x } 2xy{\rm{d}}y{\rm{d}}x = \frac{1}{{12}}$

Work Step by Step

We have $f\left( {x,y} \right) = 2xy$ bounded by $x=y$ and $x = {y^2}$. We can consider the domain as a vertically simple region (please see the figure attached). Substituting $y=x$ in $x = {y^2}$ gives $x = {x^2}$ ${x^2} - x = 0$ $x\left( {x - 1} \right) = 0$ So, the intersection occurs at $x=0$ and $x=1$. Thus, the lower boundary is $y=x$ and the upper boundary is $y = \sqrt x $. Whereas, the left boundary is $x=0$ and the right boundary is $x=1$. Thus, the domain description is given by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,x \le y \le \sqrt x } \right\}$ We integrate $f\left( {x,y} \right) = 2xy$ over ${\cal D}$ as an iterated integral: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = x}^{\sqrt x } 2xy{\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 x\left( {{y^2}|_x^{\sqrt x }} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 x\left( {x - {x^2}} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \left( {{x^2} - {x^3}} \right){\rm{d}}x$ $ = \left( {\frac{1}{3}{x^3} - \frac{1}{4}{x^4}} \right)|_0^1$ $ = \frac{1}{3} - \frac{1}{4} = \frac{1}{{12}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.