Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 858: 22

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^{\cos x} \sin x{\rm{d}}y{\rm{d}}x \simeq 0.35404$

Work Step by Step

We have $f\left( {x,y} \right) = \sin x$; bounded by $x=0$, $x=1$, $y = \cos x$. The domain ${\cal D}$ is a vertically simple region (please see the figure attached). So, the domain description is given by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,0 \le y \le \cos x} \right\}$ We evaluate the double integral of $f\left( {x,y} \right) = \sin x$ over ${\cal D}$ as an iterated integral: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^{\cos x} \sin x{\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \sin x\left( {y|_0^{\cos x}} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \sin x\cos x{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \sin 2x{\rm{d}}x$ $ = - \frac{1}{4}\cos 2x|_0^1$ $ = - \frac{1}{4}\cos 2 + \frac{1}{4}$ $ \simeq 0.35404$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.