Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 858: 2

Answer

The estimate of $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}x{\rm{d}}y$ is ${S_{5,4}} = 3.25$

Work Step by Step

From Figure 22, we have $\Delta {x_j} = \frac{{1 - \left( { - 1.5} \right)}}{5} = 0.5$ and $\Delta {y_j} = \frac{{1 - 0}}{4} = 0.25$. So, $\Delta {A_j} = \Delta {x_j}\cdot\Delta {y_j} = 0.125$. Using Figure 22, we list the values in the following table: $\begin{array}{*{20}{c}} j&1&2&3&4&5&6&7&8&9\\ {f\left( {{P_j}} \right)}&{2.5}&2&3&{2.3}&{2.9}&{3.5}&{3.3}&3&{3.5} \end{array}$ The Riemann sum is ${S_{5,4}} = \mathop \sum \limits_9^{j = 1} f\left( {{P_j}} \right)\Delta {A_j}$ $ = 0.125\left( {2.5 + 2 + 3 + 2.3 + 2.9 + 3.5 + 3.3 + 3 + 3.5} \right)$ $ = 3.25$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.