Answer
$2 \ln 2 -\dfrac{3}{4}$
Work Step by Step
The domain $D$ for given region can be expressed as: $1 \leq x \leq 2$ and $0 \leq y \leq \sqrt {4-x^2}$
The iterated integral can be calculated as:
$\iint_{D} \dfrac{y}{x} d A=\int_{1}^{2} \int_{0}^{\sqrt {4-x^2}} \dfrac{y}{x} \ dx\\=\dfrac{1}{2} \int_{1}^{2} [\dfrac{4-x^2}{x}] \ dx\\=\dfrac{1}{2}[4 \ln 2-2+\dfrac{1}{2}] \\=2 \ln 2 -\dfrac{3}{4}$