Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 858: 1

Answer

Choice 1. sample points $ \bullet $ (there are 6): ${S_{3,4}} = - 3$ Choice 2. sample points $ \circ $ (there are 8) ${S_{3,4}} = - 4$ The sample points $ \circ $ is a better approximation to the integral of $f$ over ${\cal D}$ because there are more points in the domain.

Work Step by Step

We have $f\left( {x,y} \right) = x - y$. From Figure 21, we see that $\Delta {x_j} = \Delta {y_j} = 1$. We calculate the Riemann sum for $f\left( {x,y} \right) = x - y$ using two choices: Choice 1. sample points $ \bullet $ (there are 6) Using Figure 21, we list the values in the following table: $\begin{array}{*{20}{c}} {{P_j} = \left( {{x_j},{y_j}} \right)}&{\left( {1,1} \right)}&{\left( {2,1} \right)}&{\left( {1,2} \right)}&{\left( {2,2} \right)}&{\left( {1,3} \right)}&{\left( {2,3} \right)}\\ {f\left( {{x_j},{y_j}} \right)}&0&1&{ - 1}&0&{ - 2}&{ - 1} \end{array}$ From Figure 21, we see that $\Delta {A_j} = 1$. So, the Riemann sum for $f\left( {x,y} \right)$ is ${S_{3,4}} = \mathop \sum \limits_{j = 1}^6 f\left( {{P_j}} \right)\Delta {A_j} = 0 + 1 - 1 + 0 - 2 - 1 = - 3$ Choice 2. sample points $ \circ $ (there are 8) Using Figure 21, we list the values in the following table: $\begin{array}{*{20}{c}} {{P_j} = \left( {{x_j},{y_j}} \right)}&{\left( {\frac{3}{2},\frac{1}{2}} \right)}&{\left( {\frac{1}{2},\frac{3}{2}} \right)}&{\left( {\frac{3}{2},\frac{3}{2}} \right)}&{\left( {\frac{5}{2},\frac{3}{2}} \right)}&{\left( {\frac{1}{2},\frac{5}{2}} \right)}&{\left( {\frac{3}{2},\frac{5}{2}} \right)}&{\left( {\frac{5}{2},\frac{5}{2}} \right)}&{\left( {\frac{3}{2},\frac{7}{2}} \right)}\\ {f\left( {{x_j},{y_j}} \right)}&1&{ - 1}&0&1&{ - 2}&{ - 1}&0&{ - 2} \end{array}$ Since $\Delta {A_j} = 1$. So, the Riemann sum for $f\left( {x,y} \right)$ is ${S_{3,4}} = \mathop \sum \limits_{j = 1}^8 f\left( {{P_j}} \right)\Delta {A_j} = 1 - 1 + 0 + 1 - 2 - 1 + 0 - 2 = - 4$ The sample points $ \circ $ is a better approximation to the integral of $f$ over ${\cal D}$ because there are more points in the domain.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.