Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 822: 23

Answer

The critical point and its nature: $\begin{array}{*{20}{c}} {{\rm{Critical}}}&{}\\ {{\rm{Point}}}&{{\rm{Type}}}\\ {\left( { - \frac{1}{6}, - \frac{{17}}{{18}}} \right)}&{{\rm{local{\ }minimum}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = \left( {x + 3y} \right){{\rm{e}}^{y - {x^2}}}$. The partial derivatives are ${f_x} = {{\rm{e}}^{y - {x^2}}} - 2x\left( {x + 3y} \right){{\rm{e}}^{y - {x^2}}}$ $ = \left( { - 2{x^2} - 6xy + 1} \right){{\rm{e}}^{y - {x^2}}}$ ${f_y} = 3{{\rm{e}}^{y - {x^2}}} + \left( {x + 3y} \right){{\rm{e}}^{y - {x^2}}}$ $ = \left( {x + 3y + 3} \right){{\rm{e}}^{y - {x^2}}}$ ${f_{xx}} = \left( { - 4x - 6y} \right){{\rm{e}}^{y - {x^2}}} - 2x\left( { - 2{x^2} - 6xy + 1} \right){{\rm{e}}^{y - {x^2}}}$ $ = 2{{\rm{e}}^{ - {x^2} + y}}\left( {2{x^3} + 6{x^2}y - 3x - 3y} \right)$ ${f_{yy}} = 3{{\rm{e}}^{y - {x^2}}} + \left( {x + 3y + 3} \right){{\rm{e}}^{y - {x^2}}}$ $ = \left( {x + 3y + 6} \right){{\rm{e}}^{y - {x^2}}}$ ${f_{xy}} = - 6x{{\rm{e}}^{y - {x^2}}} + \left( { - 2{x^2} - 6xy + 1} \right){{\rm{e}}^{y - {x^2}}}$ $ = \left( { - 2{x^2} - 6xy - 6x + 1} \right){{\rm{e}}^{y - {x^2}}}$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = \left( { - 2{x^2} - 6xy + 1} \right){{\rm{e}}^{y - {x^2}}} = 0$ ${f_y} = \left( {x + 3y + 3} \right){{\rm{e}}^{y - {x^2}}} = 0$ Since ${{\rm{e}}^{y - {x^2}}} \ne 0$, we obtain two simultaneous equations: (1) ${\ \ \ }$ $ - 2{x^2} - 6xy + 1 = 0$ ${\ }$ and ${\ }$ $x + 3y + 3 = 0$ The second equation gives $y = - \frac{{x + 3}}{3}$. Substituting it in the first equation gives $ - 2{x^2} - 6x\left( { - \frac{{x + 3}}{3}} \right) + 1 = 0$ $ - 2{x^2} + 2x\left( {x + 3} \right) + 1 = 0$ $6x + 1 = 0$, ${\ \ \ }$ $x = - \frac{1}{6}$ Substituting $x = - \frac{1}{6}$ in $y = - \frac{{x + 3}}{3}$ gives $y = - \frac{{17}}{{18}}$. So, there is only one critical point: $\left( { - \frac{1}{6}, - \frac{{17}}{{18}}} \right)$. We evaluate ${f_{xx}}$, ${f_{yy}}$ and ${f_{xy}}$ at the corresponding critical point and use the Second Derivative Test to determine the nature of the critical point. The results are listed in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical}}}&{}&{}&{}&{{\rm{Discriminant}}}&{}\\ {{\rm{Point}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\rm{Type}}}\\ {\left( { - \frac{1}{6}, - \frac{{17}}{{18}}} \right)}&{2.396}&{1.135}&{0.378}&{2.575}&{{\rm{local{\ }minimum}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.