Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 822: 20

Answer

The critical points and their nature: $\begin{array}{*{20}{c}} {{\rm{Critical}}}&{}\\ {{\rm{Point}}}&{{\rm{Type}}}\\ {\left( {\frac{1}{{{\rm{e}}\sqrt 2 }},\frac{1}{{{\rm{e}}\sqrt 2 }}} \right)}&{{\rm{local{\ }minimum}}}\\ {\left( { - \frac{1}{{{\rm{e}}\sqrt 2 }}, - \frac{1}{{{\rm{e}}\sqrt 2 }}} \right)}&{{\rm{local{\ }maximum}}}\\ {\left( {\frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }}} \right)}&{{\rm{saddle{\ }point}}}\\ {\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)}&{{\rm{saddle{\ }point}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = \left( {x + y} \right)\ln \left( {{x^2} + {y^2}} \right)$. The partial derivatives are ${f_x} = \ln \left( {{x^2} + {y^2}} \right) + \frac{{2x\left( {x + y} \right)}}{{{x^2} + {y^2}}}$, ${\ \ }$ ${f_y} = \ln \left( {{x^2} + {y^2}} \right) + \frac{{2y\left( {x + y} \right)}}{{{x^2} + {y^2}}}$ ${f_{xx}} = \frac{{2x}}{{{x^2} + {y^2}}} + \frac{{\left( {{x^2} + {y^2}} \right)\left( {4x + 2y} \right) - 4{x^2}\left( {x + y} \right)}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}$ $ = \frac{{2{x^3} - 2{x^2}y + 6x{y^2} + 2{y^3}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}$ ${f_{yy}} = \frac{{2y}}{{{x^2} + {y^2}}} + \frac{{\left( {{x^2} + {y^2}} \right)\left( {2x + 4y} \right) - 4{y^2}\left( {x + y} \right)}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}$ $ = \frac{{2{x^3} + 6{x^2}y - 2x{y^2} + 2{y^3}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}$ ${f_{xy}} = \frac{{2y}}{{{x^2} + {y^2}}} + \frac{{2x\left( {{x^2} + {y^2}} \right) - 4xy\left( {x + y} \right)}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}$ $ = \frac{{2{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = \ln \left( {{x^2} + {y^2}} \right) + \frac{{2x\left( {x + y} \right)}}{{{x^2} + {y^2}}} = 0$ ${f_y} = \ln \left( {{x^2} + {y^2}} \right) + \frac{{2y\left( {x + y} \right)}}{{{x^2} + {y^2}}} = 0$ From the first equation we obtain (!) ${\ \ \ }$ $\ln \left( {{x^2} + {y^2}} \right) = - \frac{{2x\left( {x + y} \right)}}{{{x^2} + {y^2}}}$ Substituting it in the second equation gives $ - \frac{{2x\left( {x + y} \right)}}{{{x^2} + {y^2}}} + \frac{{2y\left( {x + y} \right)}}{{{x^2} + {y^2}}} = 0$ $\frac{{ - 2{x^2} - 2xy + 2yx + 2{y^2}}}{{{x^2} + {y^2}}} = 0$ So, we solve the equation $ - 2{x^2} + 2{y^2} = 0$. The solution is $y = \pm x$. 1. Substituting $y=x$ in equation (1) gives $\ln \left( {2{x^2}} \right) = - \frac{{4{x^2}}}{{2{x^2}}} = - 2$ ${{\rm{e}}^{ - 2}} = 2{x^2}$, ${\ \ \ }$ $x = \pm \frac{1}{{{\rm{e}}\sqrt 2 }}$ The solutions are $\left( {\frac{1}{{{\rm{e}}\sqrt 2 }},\frac{1}{{{\rm{e}}\sqrt 2 }}} \right)$ and $\left( { - \frac{1}{{{\rm{e}}\sqrt 2 }}, - \frac{1}{{{\rm{e}}\sqrt 2 }}} \right)$. 2. Substituting $y=-x$ in equation (1) gives $\ln \left( {2{x^2}} \right) = 0$ $2{x^2} = 1$, ${\ \ \ }$ $x = \pm \frac{1}{{\sqrt 2 }}$ The solutions are $\left( {\frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }}} \right)$ and $\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$. So, the critical points are $\left( {\frac{1}{{{\rm{e}}\sqrt 2 }},\frac{1}{{{\rm{e}}\sqrt 2 }}} \right)$,$\left( { - \frac{1}{{{\rm{e}}\sqrt 2 }}, - \frac{1}{{{\rm{e}}\sqrt 2 }}} \right)$,$\left( {\frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }}} \right)$ and $\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$. Recall from previous results: ${f_{xx}} = \frac{{2{x^3} - 2{x^2}y + 6x{y^2} + 2{y^3}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}$ ${f_{yy}} = \frac{{2{x^3} + 6{x^2}y - 2x{y^2} + 2{y^3}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}$ ${f_{xy}} = \frac{{2{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}$ We evaluate ${f_{xx}}$, ${f_{yy}}$ and ${f_{xy}}$ at the corresponding critical point and use the Second Derivative Test to determine the nature of it. The results are listed in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical}}}&{}&{}&{}&{{\rm{Discriminant}}}&{}\\ {{\rm{Point}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\rm{Type}}}\\ {\left( {\frac{1}{{{\rm{e}}\sqrt 2 }},\frac{1}{{{\rm{e}}\sqrt 2 }}} \right)}&{2\sqrt 2 {\rm{e}}}&{2\sqrt 2 {\rm{e}}}&0&{8{{\rm{e}}^2}}&{{\rm{local{\ }minimum}}}\\ {\left( { - \frac{1}{{{\rm{e}}\sqrt 2 }}, - \frac{1}{{{\rm{e}}\sqrt 2 }}} \right)}&{ - 2\sqrt 2 {\rm{e}}}&{ - 2\sqrt 2 {\rm{e}}}&0&{8{{\rm{e}}^2}}&{{\rm{local{\ }maximum}}}\\ {\left( {\frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }}} \right)}&{2\sqrt 2 }&{ - 2\sqrt 2 }&0&{ - 8}&{{\rm{saddle{\ }point}}}\\ {\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)}&{ - 2\sqrt 2 }&{2\sqrt 2 }&0&{ - 8}&{{\rm{saddle{\ }point}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.