Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 822: 18

Answer

The critical point and its nature: $\begin{array}{*{20}{c}} {{\rm{Critical}}}&{}\\ {{\rm{Point}}}&{{\rm{Type}}}\\ {\left( {0,1} \right)}&{{\rm{saddle{\ } point}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = x\ln \left( {x + y} \right)$. The partial derivatives are ${f_x} = \ln \left( {x + y} \right) + \frac{x}{{x + y}}$, ${\ \ \ }$ ${f_y} = \frac{x}{{x + y}}$ ${f_{xx}} = \frac{1}{{x + y}} + \frac{{x + y - x}}{{{{\left( {x + y} \right)}^2}}} = \frac{{x + 2y}}{{{{\left( {x + y} \right)}^2}}}$ ${f_{yy}} = - \frac{x}{{{{\left( {x + y} \right)}^2}}}$ ${f_{xy}} = \frac{1}{{x + y}} - \frac{x}{{{{\left( {x + y} \right)}^2}}} = \frac{y}{{{{\left( {x + y} \right)}^2}}}$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = \ln \left( {x + y} \right) + \frac{x}{{x + y}} = 0$, ${\ \ }$ ${f_y} = \frac{x}{{x + y}} = 0$ The second equation yields $x=0$. Substituting $x=0$ in the first equation gives $\ln y = 0$. So, $y=1$. So, there is only one critical point: $\left( {0,1} \right)$. We use the Second Derivative Test to determine the nature of the critical point. The results are listed in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\rm{Discriminant}}}&{}\\ {{\rm{Point}}}&{\frac{{x + 2y}}{{{{\left( {x + y} \right)}^2}}}}&{ - \frac{x}{{{{\left( {x + y} \right)}^2}}}}&{\frac{y}{{{{\left( {x + y} \right)}^2}}}}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\rm{Type}}}\\ {\left( {0,1} \right)}&2&0&1&{ - 1}&{{\rm{saddle{\ } point}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.