Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 822: 11

Answer

The critical points and their nature: $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\bf{Discriminant}}}&{}\\ {{\bf{Point}}}&{ - 18x}&{ - 4x}&{ - 4y}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\bf{Type}}}\\ {\left( {0,\sqrt 2 } \right)}&0&0&{ - 4\sqrt 2 }&{ - 32}&{{\rm{saddle{\ }point}}}\\ {\left( {0, - \sqrt 2 } \right)}&0&0&{4\sqrt 2 }&{ - 32}&{{\rm{saddle{\ }point}}}\\ {\left( {\frac{2}{3},0} \right)}&{ - 12}&{ - \frac{8}{3}}&0&{32}&{{\rm{local{\ }maximum}}}\\ {\left( { - \frac{2}{3},0} \right)}&{12}&{\frac{8}{3}}&0&{32}&{{\rm{local{\ }minimum}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = 4x - 3{x^3} - 2x{y^2}$. The partial derivatives are ${f_x} = 4 - 9{x^2} - 2{y^2}$, ${\ \ \ }$ ${f_y} = - 4xy$ ${f_{xx}} = - 18x$, ${\ \ }$ ${f_{yy}} = - 4x$, ${\ \ }$ ${f_{xy}} = - 4y$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = 4 - 9{x^2} - 2{y^2} = 0$, ${\ \ }$ ${f_y} = - 4xy = 0$ From the second equation we obtain the solutions $x=0$ or $y=0$. For $x=0$, we obtain from the first equation $y = \pm \sqrt 2 $. For $y=0$, we obtain from the first equation $x = \pm \frac{2}{3}$. So, the critical points are $\left( {0,\sqrt 2 } \right)$, $\left( {0, - \sqrt 2 } \right)$, $\left( {\frac{2}{3},0} \right)$ and $\left( { - \frac{2}{3},0} \right)$. Next, we use the Second Derivative Test to determine the nature of the critical points. The results are listed in the following table: $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\bf{Discriminant}}}&{}\\ {{\bf{Point}}}&{ - 18x}&{ - 4x}&{ - 4y}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\bf{Type}}}\\ {\left( {0,\sqrt 2 } \right)}&0&0&{ - 4\sqrt 2 }&{ - 32}&{{\rm{saddle{\ }point}}}\\ {\left( {0, - \sqrt 2 } \right)}&0&0&{4\sqrt 2 }&{ - 32}&{{\rm{saddle{\ }point}}}\\ {\left( {\frac{2}{3},0} \right)}&{ - 12}&{ - \frac{8}{3}}&0&{32}&{{\rm{local{\ }maximum}}}\\ {\left( { - \frac{2}{3},0} \right)}&{12}&{\frac{8}{3}}&0&{32}&{{\rm{local{\ }minimum}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.