Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 822: 17

Answer

The critical points are: $\left( {x,y} \right) = \left( {m\pi ,\frac{{\left( {2n + 1} \right)\pi }}{2}} \right)$, where $m,n = 0, \pm 1, \pm 2,...$ ${\rm{type{\ } of{\ } critical{\ } point : }}\left\{ {\begin{array}{*{20}{c}} {n{\ } {\rm{is{\ } odd,}}}&{\left\{ {\begin{array}{*{20}{c}} {m{\ } {\rm{is{\ } odd,}}}&{\rm{local}{\ } {\rm{maximum}}}\\ {m{\ } {\rm{is{\ } even,}}}&{\rm{local}{\ } {\rm{minimum}}} \end{array}} \right.}\\ {n{\ } {\rm{is{\ } even,}}}&{{\rm{saddle{\ } point}}} \end{array}} \right.$ We list here some of the critical points and their nature: $\begin{array}{*{20}{c}} {}&{}\\ n&m\\ { - 2}&{ - 1}\\ 0&0\\ 2&1\\ 4&2\\ { - 3}&1\\ { - 1}&2\\ 1&3\\ 3&4 \end{array}\begin{array}{*{20}{c}} {{\rm{Critical{\ } Point}}}\\ {\left( {m\pi ,{{\left( {2n + 1} \right)\pi }}/{2}} \right)}&{{\rm{Type}}}\\ {\left( { - \pi , - {{3\pi }}/{2}} \right)}&{{\rm{saddle{\ } point}}}\\ {\left( {0,{\pi }/{2}} \right)}&{{\rm{saddle{\ } point}}}\\ {\left( {\pi ,{{5\pi }}/{2}} \right)}&{{\rm{saddle{\ } point}}}\\ {\left( {2\pi ,{{9\pi }}/{2}} \right)}&{{\rm{saddle{\ } point}}}\\ {\left( {\pi , - {{5\pi }}/{2}} \right)}&{{\rm{local{\ } maximum}}}\\ {\left( {2\pi , - {\pi }/{2}} \right)}&{{\rm{local{\ } minimum}}}\\ {\left( {3\pi ,{{3\pi }}/{2}} \right)}&{{\rm{local{\ } maximum}}}\\ {\left( {4\pi ,{{7\pi }}/{2}} \right)}&{{\rm{local{\ } minimum}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = \sin \left( {x + y} \right) - \cos x$. The partial derivatives are ${f_x} = \cos \left( {x + y} \right) + \sin x$, ${\ \ }$ ${f_y} = \cos \left( {x + y} \right)$ ${f_{xx}} = - \sin \left( {x + y} \right) + \cos x$ ${f_{yy}} = - \sin \left( {x + y} \right)$ ${f_{xy}} = - \sin \left( {x + y} \right)$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = \cos \left( {x + y} \right) + \sin x = 0$, ${\ \ }$ ${f_y} = \cos \left( {x + y} \right) = 0$ The two equations imply that $\sin x = 0$. The solutions are $x = m\pi $, where $m = 0, \pm 1, \pm 2,...$ The solutions for the second equation are $x + y = \frac{{\left( {2n + 1} \right)\pi }}{2}$, where $n = 0, \pm 1, \pm 2,...$ Since $x = m\pi $, so $y = \frac{{\left( {2n + 1} \right)\pi }}{2} - m\pi $. Thus, the critical points are: $\left( {x,y} \right) = \left( {m\pi ,\frac{{\left( {2n + 1} \right)\pi }}{2}} \right)$, where $m,n = 0, \pm 1, \pm 2,...$ Recall from previous results: ${f_{xx}} = - \sin \left( {x + y} \right) + \cos x$ ${f_{yy}} = - \sin \left( {x + y} \right)$ ${f_{xy}} = - \sin \left( {x + y} \right)$ So, the discriminant $D$ is $D = {f_{xx}}{f_{yy}} - {f_{xy}}^2$ $D = - \sin \left( {x + y} \right)\left( { - \sin \left( {x + y} \right) + \cos x} \right) - {\sin ^2}\left( {x + y} \right)$ $D = - \cos x\sin \left( {x + y} \right)$ Since $\left( {x,y} \right) = \left( {m\pi ,\frac{{\left( {2n + 1} \right)\pi }}{2}} \right)$, for $m,n = 0, \pm 1, \pm 2,...$ $D = - \cos m\pi \sin \left( {m\pi + \frac{{\left( {2n + 1} \right)\pi }}{2}} \right)$ $ = - \cos m\pi \sin m\pi \cos \frac{{\left( {2n + 1} \right)\pi }}{2} - {\cos ^2}m\pi \sin \frac{{\left( {2n + 1} \right)\pi }}{2}$ Since $\sin m\pi = 0$, we get $D = - {\cos ^2}m\pi \sin \frac{{\left( {2n + 1} \right)\pi }}{2}$ $D = \left\{ {\begin{array}{*{20}{c}} { + 1,}&{{\rm{n{\ } is{\ } odd}}}\\ { - 1,}&{{\rm{n{\ } is{\ } even}}} \end{array}} \right.$ Case 1. $n$ is even Since $D < 0$, the critical point is a saddle point. Case 2. $n$ is odd For $n$ is odd, $D > 0$. However, we still need to examine ${f_{xx}}$. ${f_{xx}} = - \sin \left( {x + y} \right) + \cos x$ ${f_{xx}} = - \sin \left( {m\pi + \frac{{\left( {2n + 1} \right)\pi }}{2}} \right) + \cos m\pi $ $ = - \sin m\pi \cos \frac{{\left( {2n + 1} \right)\pi }}{2} - \cos m\pi \sin \frac{{\left( {2n + 1} \right)\pi }}{2} + \cos m\pi $ Since $\sin m\pi = 0$, we get ${f_{xx}} = \left( {1 - \sin \frac{{\left( {2n + 1} \right)\pi }}{2}} \right)\cos m\pi $ Since $n$ is odd, $\sin \frac{{\left( {2n + 1} \right)\pi }}{2} = - 1$, thus ${f_{xx}} = 2\cos m\pi $. ${f_{xx}} = \left\{ {\begin{array}{*{20}{c}} { - 2,}&{{\rm{m{\ } is{\ } odd}}}\\ {2,}&{{\rm{m{\ } is{\ } even}}} \end{array}} \right.$ From these results we conclude that ${\rm{type{\ } of{\ } critical{\ } point : }}\left\{ {\begin{array}{*{20}{c}} {n{\ } {\rm{is{\ } odd,}}}&{\left\{ {\begin{array}{*{20}{c}} {m{\ } {\rm{is{\ } odd,}}}&{\rm{local}{\ } {\rm{maximum}}}\\ {m{\ } {\rm{is{\ } even,}}}&{\rm{local}{\ } {\rm{minimum}}} \end{array}} \right.}\\ {n{\ } {\rm{is{\ } even,}}}&{{\rm{saddle{\ } point}}} \end{array}} \right.$ Using the Second Derivative Test we list some critical points in the following table: $\begin{array}{*{20}{c}} {}&{}&{{\rm{Critical{\ } Point}}}\\ n&m&{\left( {m\pi ,{{\left( {2n + 1} \right)\pi }}/{2}} \right)}\\ { - 2}&{ - 1}&{\left( { - \pi , - {{3\pi }}/{2}} \right)}\\ 0&0&{\left( {0,{\pi }/{2}} \right)}\\ 2&1&{\left( {\pi ,{{5\pi }}/{2}} \right)}\\ 4&2&{\left( {2\pi ,{{9\pi }}/{2}} \right)}\\ { - 3}&1&{\left( {\pi , - {{5\pi }}/{2}} \right)}\\ { - 1}&2&{\left( {2\pi , - {\pi }/{2}} \right)}\\ 1&3&{\left( {3\pi ,{{3\pi }}/{2}} \right)}\\ 3&4&{\left( {4\pi ,{{7\pi }}/{2}} \right)} \end{array}\begin{array}{*{20}{c}} {}&{}&{}\\ {{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}\\ 0&1&1\\ 0&{ - 1}&{ - 1}\\ 0&1&1\\ 0&{ - 1}&{ - 1}\\ { - 2}&{ - 1}&{ - 1}\\ 2&1&1\\ { - 2}&{ - 1}&{ - 1}\\ 2&1&1 \end{array}\begin{array}{*{20}{c}} {{\rm{Discriminant}}}&{}\\ {D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\rm{Type}}}\\ { - 1}&{{\rm{saddle{\ } point}}}\\ { - 1}&{{\rm{saddle{\ } point}}}\\ { - 1}&{{\rm{saddle{\ } point}}}\\ { - 1}&{{\rm{saddle{\ } point}}}\\ 1&{{\rm{local{\ } maximum}}}\\ 1&{{\rm{local{\ } minimum}}}\\ 1&{{\rm{local{\ } maximum}}}\\ 1&{{\rm{local{\ } minimum}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.