Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 822: 14

Answer

The critical point and its nature: $\begin{array}{*{20}{c}} {{\rm{Critical}}}&{}\\ {{\rm{Point}}}&{{\rm{Type}}}\\ {\left( {0,2} \right)}&{{\rm{saddle{\ } point}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = {{\rm{e}}^{{x^2} - {y^2} + 4y}}$. The partial derivatives are ${f_x} = 2x{{\rm{e}}^{{x^2} - {y^2} + 4y}}$, ${\ \ }$ ${f_y} = \left( { - 2y + 4} \right){{\rm{e}}^{{x^2} - {y^2} + 4y}}$ ${f_{xx}} = 2{{\rm{e}}^{{x^2} - {y^2} + 4y}} + 4{x^2}{{\rm{e}}^{{x^2} - {y^2} + 4y}}$ $ = \left( {2 + 4{x^2}} \right){{\rm{e}}^{{x^2} - {y^2} + 4y}}$ ${f_{yy}} = - 2{{\rm{e}}^{{x^2} - {y^2} + 4y}} + {\left( { - 2y + 4} \right)^2}{{\rm{e}}^{{x^2} - {y^2} + 4y}}$ $ = \left( { - 2 + {{\left( { - 2y + 4} \right)}^2}} \right){{\rm{e}}^{{x^2} - {y^2} + 4y}}$ ${f_{xy}} = 2x\left( { - 2y + 4} \right){{\rm{e}}^{{x^2} - {y^2} + 4y}}$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = 2x{{\rm{e}}^{{x^2} - {y^2} + 4y}} = 0$, ${\ \ }$ ${f_y} = \left( { - 2y + 4} \right){{\rm{e}}^{{x^2} - {y^2} + 4y}} = 0$ Since ${{\rm{e}}^{{x^2} - {y^2} + 4y}} \ne 0$, the solutions are $x=0$ and $y=2$. So, there is only one critical point: $\left( {0,2} \right)$. Recall from previous results: ${f_{xx}} = \left( {2 + 4{x^2}} \right){{\rm{e}}^{{x^2} - {y^2} + 4y}}$ ${f_{yy}} = \left( { - 2 + {{\left( { - 2y + 4} \right)}^2}} \right){{\rm{e}}^{{x^2} - {y^2} + 4y}}$ ${f_{xy}} = 2x\left( { - 2y + 4} \right){{\rm{e}}^{{x^2} - {y^2} + 4y}}$ We evaluate ${f_{xx}}$, ${f_{yy}}$ and ${f_{xy}}$ at the critical point and use the Second Derivative Test to determine the nature of the critical point. The results are listed in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical}}}&{}&{}&{}&{{\rm{Discriminant}}}&{}\\ {{\rm{Point}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\rm{Type}}}\\ {\left( {0,2} \right)}&{2{{\rm{e}}^4}}&{ - 2{{\rm{e}}^4}}&0&{ - 4{{\rm{e}}^8}}&{{\rm{saddle{\ } point}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.