Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.3 Partial Derivatives - Exercises - Page 781: 48

Answer

At $\left( {T,v} \right) = \left( { - 10,15} \right)$: $\frac{{\partial W}}{{\partial v}}{|_{\left( {T,v} \right) = \left( { - 10,15} \right)}} \simeq - 0.31$ $\Delta W \simeq - 0.62$

Work Step by Step

We have $W = 13.1267 + 0.6215T - 13.947{v^{0.16}} + 0.486T{v^{0.16}}$ So, $\frac{{\partial W}}{{\partial v}} = - 0.16 \times 13.947{v^{ - 0.84}} + 0.16 \times 0.486T{v^{ - 0.84}}$ $\frac{{\partial W}}{{\partial v}} = - 2.23152{v^{ - 0.84}} + 0.07776T{v^{ - 0.84}}$ $\frac{{\partial W}}{{\partial v}}{|_{\left( {T,v} \right) = \left( { - 10,15} \right)}} \simeq - 0.31$ Next, we estimate the change of wind-chill temperature $W$ if $\Delta v = 2$ at $\left( {T,v} \right) = \left( { - 10,15} \right)$: $\Delta W = \frac{{\partial W}}{{\partial v}}{|_{\left( {T,v} \right) = \left( { - 10,15} \right)}}\Delta v$ $\Delta W \simeq - 0.31 \times 2 \simeq - 0.62$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.