Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.3 Partial Derivatives - Exercises - Page 781: 47

Answer

(a) $I$ at $\left( {T,H} \right) = \left( {95,50} \right)$ is $I\left( {95,50} \right) = 73.1913$ (b) The partial derivative $\frac{{\partial I}}{{\partial T}}$ tells us the increase in $I$ per degree increase in $T$ when $\left( {T,H} \right) = \left( {95,50} \right)$. $\frac{{\partial I}}{{\partial T}}{|_{\left( {T,H} \right) = \left( {95,50} \right)}} \simeq 1.66$

Work Step by Step

(a) We have an approximate formula for the heat index: $I\left( {T,H} \right) = 45.33 + 0.6845T + 5.758H - 0.00365{T^2}$ $ - 0.1565HT + 0.001H{T^2}$ Calculate $I$ at $\left( {T,H} \right) = \left( {95,50} \right)$: $I\left( {95,50} \right) = 45.33 + 0.6845\cdot95 + 5.758\cdot50 - 0.00365\cdot{\left( {95} \right)^2}$ $ - 0.1565\cdot50\cdot95 + 0.001\cdot50\cdot{\left( {95} \right)^2}$ $ = 73.1913$ (b) The partial derivative $\frac{{\partial I}}{{\partial T}}$ tells us the increase in $I$ per degree increase in $T$ when $\left( {T,H} \right) = \left( {95,50} \right)$. So, $\frac{{\partial I}}{{\partial T}} = 0.6845 - 2 \times 0.00365T - 0.1565H + 2 \times 0.001HT$ $\frac{{\partial I}}{{\partial T}} = 0.6845 - 0.0073T - 0.1565H + 0.002HT$ $\frac{{\partial I}}{{\partial T}}{|_{\left( {T,H} \right) = \left( {95,50} \right)}} \simeq 1.66$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.