Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 726: 33

Answer

There are two arc length parametrizations: ${{\bf{r}}_1}\left( s \right) = \left( {\frac{1}{9}\left( {{{\left( {27s + 8} \right)}^{2/3}} - 4} \right),\frac{1}{{27}}{{\left( {{{\left( {27s + 8} \right)}^{2/3}} - 4} \right)}^{3/2}}} \right)$ and ${{\bf{r}}_2}\left( s \right) = \left( {\frac{1}{9}\left( {{{\left( {27s + 8} \right)}^{2/3}} - 4} \right), - \frac{1}{{27}}{{\left( {{{\left( {27s + 8} \right)}^{2/3}} - 4} \right)}^{3/2}}} \right)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {{t^2},{t^3}} \right)$. The derivative is ${\bf{r}}'\left( t \right) = \left( {2t,3{t^2}} \right)$. So, $||{\bf{r}}'\left( t \right)|{|^2} = \left( {2t,3{t^2}} \right)\cdot\left( {2t,3{t^2}} \right) = 4{t^2} + 9{t^4}$ $||{\bf{r}}'\left( t \right)|| = t\sqrt {4 + 9{t^2}} $ Evaluate the arc length function: $s\left( t \right) = \mathop \smallint \limits_0^t ||{\bf{r}}'\left( u \right)||{\rm{d}}u$ $s\left( t \right) = \mathop \smallint \limits_0^t u\sqrt {4 + 9{u^2}} {\rm{d}}u$ Write $v = 4 + 9{u^2}$. So, $dv = 18udu$. The integral becomes $s\left( t \right) = \frac{1}{{18}}\mathop \smallint \limits_4^{4 + 9{t^2}} {v^{1/2}}{\rm{d}}v$ $s\left( t \right) = \frac{1}{{18}}\cdot\frac{2}{3}{v^{3/2}}|_4^{4 + 9{t^2}}$ $s\left( t \right) = \frac{1}{{27}}\left( {{{\left( {4 + 9{t^2}} \right)}^{3/2}} - 8} \right)$ It follows that $27s + 8 = {\left( {4 + 9{t^2}} \right)^{3/2}}$ ${\left( {27s + 8} \right)^{2/3}} = 4 + 9{t^2}$ $t = \pm \frac{1}{3}{\left( {{{\left( {27s + 8} \right)}^{2/3}} - 4} \right)^{1/2}}$ Thus, there are two inverses of $s\left( t \right)$ corresponding to the two signs, that is, ${t_1} = \frac{1}{3}{\left( {{{\left( {27s + 8} \right)}^{2/3}} - 4} \right)^{1/2}}$ and ${t_2} = - \frac{1}{3}{\left( {{{\left( {27s + 8} \right)}^{2/3}} - 4} \right)^{1/2}}$ Substituting ${t_1}$ in ${\bf{r}}\left( t \right) = \left( {{t^2},{t^3}} \right)$ gives the first arc length parametrization: ${{\bf{r}}_1}\left( s \right) = \left( {\frac{1}{9}\left( {{{\left( {27s + 8} \right)}^{2/3}} - 4} \right),\frac{1}{{27}}{{\left( {{{\left( {27s + 8} \right)}^{2/3}} - 4} \right)}^{3/2}}} \right)$ Substituting ${t_2}$ in ${\bf{r}}\left( t \right) = \left( {{t^2},{t^3}} \right)$ gives the second arc length parametrization: ${{\bf{r}}_2}\left( s \right) = \left( {\frac{1}{9}\left( {{{\left( {27s + 8} \right)}^{2/3}} - 4} \right), - \frac{1}{{27}}{{\left( {{{\left( {27s + 8} \right)}^{2/3}} - 4} \right)}^{3/2}}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.