Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 726: 32

Answer

The arc length parametrization: ${{\bf{r}}_1}\left( s \right) = (\left( {\frac{s}{{\sqrt 3 }} + 1} \right)\sin \left( {\ln \left( {\frac{s}{{\sqrt 3 }} + 1} \right)} \right),$ ${\ \ \ \ }$ $\left( {\frac{s}{{\sqrt 3 }} + 1} \right)\cos \left( {\ln \left( {\frac{s}{{\sqrt 3 }} + 1} \right)} \right),\frac{s}{{\sqrt 3 }} + 1)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^t}\sin t,{{\rm{e}}^t}\cos t,{{\rm{e}}^t}} \right)$. The derivative is ${\bf{r}}'\left( t \right) = \left( {{{\rm{e}}^t}\sin t + {{\rm{e}}^t}\cos t,{{\rm{e}}^t}\cos t - {{\rm{e}}^t}\sin t,{{\rm{e}}^t}} \right)$ ${\bf{r}}'\left( t \right) = \left( {{{\rm{e}}^t}\left( {\sin t + \cos t} \right),{{\rm{e}}^t}\left( {\cos t - \sin t} \right),{{\rm{e}}^t}} \right)$ So, $||{\bf{r}}'\left( t \right)|{|^2} = {{\rm{e}}^{2t}}{\left( {\sin t + \cos t} \right)^2} + {{\rm{e}}^{2t}}{\left( {\cos t - \sin t} \right)^2} + {{\rm{e}}^{2t}}$ $||{\bf{r}}'\left( t \right)|{|^2} = {{\rm{e}}^{2t}}\left( {1 + 2\sin t\cos t} \right)$ ${\ \ \ \ \ }$ $ + {{\rm{e}}^{2t}}\left( {1 - 2\cos t\sin t} \right) + {{\rm{e}}^{2t}}$ $||{\bf{r}}'\left( t \right)|{|^2} = 3{{\rm{e}}^{2t}}$, ${\ \ \ }$ $||{\bf{r}}'\left( t \right)|| = \sqrt 3 {{\rm{e}}^t}$ Evaluate the arc length function: $s\left( t \right) = \mathop \smallint \limits_0^t ||{\bf{r}}'\left( u \right)||{\rm{d}}u$ $s\left( t \right) = \sqrt 3 \mathop \smallint \limits_0^t {{\rm{e}}^u}{\rm{d}}u = \sqrt 3 \left( {{{\rm{e}}^t} - 1} \right)$ It follows that $\frac{s}{{\sqrt 3 }} + 1 = {{\rm{e}}^t}$. The inverse of $s\left( t \right)$ is $t = \ln \left( {\frac{s}{{\sqrt 3 }} + 1} \right)$. Substituting $t$ in ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^t}\sin t,{{\rm{e}}^t}\cos t,{{\rm{e}}^t}} \right)$ gives the arc length parametrization: ${{\bf{r}}_1}\left( s \right) = (\left( {\frac{s}{{\sqrt 3 }} + 1} \right)\sin \left( {\ln \left( {\frac{s}{{\sqrt 3 }} + 1} \right)} \right),$ ${\ \ \ \ }$ $\left( {\frac{s}{{\sqrt 3 }} + 1} \right)\cos \left( {\ln \left( {\frac{s}{{\sqrt 3 }} + 1} \right)} \right),\frac{s}{{\sqrt 3 }} + 1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.