Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 726: 18

Answer

The velocity vector at time $t$ is ${\bf{r}}'\left( t \right) = \left( {\frac{{20}}{{\sqrt {17} }}, - \frac{{\sqrt {17} }}{{20}}{t^{ - 2}}} \right)$ The velocity vector at location $\left( {2,\frac{1}{2}} \right)$, that is at $t = \frac{2}{\alpha } = \frac{{\sqrt {17} }}{{10}}$ is ${\bf{r}}'\left( {\frac{{\sqrt {17} }}{{10}}} \right) = \left( {\frac{{20}}{{\sqrt {17} }}, - \frac{5}{{\sqrt {17} }}} \right)$

Work Step by Step

We have $y = {x^{ - 1}}$ to the right of the $y$-axis. Since parametrization is not unique, let $x = \alpha t$, where $\alpha$ is a scalar. So, we may parametrize the curve by ${\bf{r}}\left( t \right) = \left( {\alpha t,\frac{1}{\alpha }{t^{ - 1}}} \right)$. The derivative is ${\bf{r}}'\left( t \right) = \left( {\alpha , - \frac{1}{\alpha }{t^{ - 2}}} \right)$. When the particle is at the point $\left( {2,\frac{1}{2}} \right)$, it has a speed of $5$ cm/s. In our parametrization, the point $\left( {2,\frac{1}{2}} \right)$ corresponds to $t = \frac{2}{\alpha }$. So, at $t = \frac{2}{\alpha }$, $||{\bf{r}}'\left( {\frac{2}{\alpha }} \right)|| = 5$ cm/s. Since ${\bf{r}}'\left( t \right) = \left( {\alpha , - \frac{1}{\alpha }{t^{ - 2}}} \right)$, so $||{\bf{r}}'\left( t \right)|{|^2} = \left( {\alpha , - \frac{1}{\alpha }{t^{ - 2}}} \right)\cdot\left( {\alpha , - \frac{1}{\alpha }{t^{ - 2}}} \right)$ $||{\bf{r}}'\left( t \right)|{|^2} = {\alpha ^2} + \frac{1}{{{\alpha ^2}}}{t^{ - 4}}$ $||{\bf{r}}'\left( t \right)|| = \sqrt {{\alpha ^2} + \frac{1}{{{\alpha ^2}}}{t^{ - 4}}} $ Since $||{\bf{r}}'\left( {\frac{2}{\alpha }} \right)|| = 5$, so $||{\bf{r}}'\left( {\frac{2}{\alpha }} \right)|| = \sqrt {{\alpha ^2} + \frac{1}{{{\alpha ^2}}}\frac{{{\alpha ^4}}}{{16}}} = 5$ $\frac{{17}}{{16}}{\alpha ^2} = 25$ $\alpha = \sqrt {\frac{{400}}{{17}}} = \frac{{20}}{{\sqrt {17} }}$ Thus, the parametrization is ${\bf{r}}\left( t \right) = \left( {\alpha t,\frac{1}{\alpha }{t^{ - 1}}} \right) = \left( {\frac{{20}}{{\sqrt {17} }}t,\frac{{\sqrt {17} }}{{20}}{t^{ - 1}}} \right)$ The velocity vector at time $t$ is ${\bf{r}}'\left( t \right) = \left( {\frac{{20}}{{\sqrt {17} }}, - \frac{{\sqrt {17} }}{{20}}{t^{ - 2}}} \right)$ The velocity vector at location $\left( {2,\frac{1}{2}} \right)$, that is at $t = \frac{2}{\alpha } = \frac{{\sqrt {17} }}{{10}}$ is ${\bf{r}}'\left( {\frac{{\sqrt {17} }}{{10}}} \right) = \left( {\frac{{20}}{{\sqrt {17} }}, - \frac{5}{{\sqrt {17} }}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.