Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 726: 25

Answer

(a) $s\left( t \right) = \sqrt {29} t$ (b) the inverse of $s\left( t \right)$ is $t = \frac{s}{{\sqrt {29} }}$. (c) ${{\bf{r}}_1}\left( s \right) = \left( {\frac{{3s}}{{\sqrt {29} }} + 1,\frac{{4s}}{{\sqrt {29} }} - 5,\frac{{2s}}{{\sqrt {29} }}} \right)$ is an arc length parametrization.

Work Step by Step

(a) We have ${\bf{r}}\left( t \right) = \left( {3t + 1,4t - 5,2t} \right)$. So, ${\bf{r}}'\left( t \right) = \left( {3,4,2} \right)$. Evaluate the arc length integral: $s\left( t \right) = \mathop \smallint \limits_0^t ||{\bf{r}}'\left( u \right)||{\rm{d}}u$ $s\left( t \right) = \mathop \smallint \limits_0^t \sqrt {\left( {3,4,2} \right)\cdot\left( {3,4,2} \right)} {\rm{d}}u$ $s\left( t \right) = \sqrt {29} t$ (b) From part (a) we get $s\left( t \right) = \sqrt {29} t$. The inverse of $s\left( t \right)$ is $t = \frac{s}{{\sqrt {29} }}$. (c) From part (b) we get $t = \frac{s}{{\sqrt {29} }}$. Substituting $t$ in ${\bf{r}}\left( t \right) = \left( {3t + 1,4t - 5,2t} \right)$ gives ${{\bf{r}}_1}\left( s \right) = \left( {\frac{{3s}}{{\sqrt {29} }} + 1,\frac{{4s}}{{\sqrt {29} }} - 5,\frac{{2s}}{{\sqrt {29} }}} \right)$ Taking the derivative of ${{\bf{r}}_1}\left( s \right)$ gives ${{\bf{r}}_1}'\left( s \right) = \left( {\frac{3}{{\sqrt {29} }},\frac{4}{{\sqrt {29} }},\frac{2}{{\sqrt {29} }}} \right)$ So, $||{{\bf{r}}_1}'\left( s \right)|| = \sqrt {\left( {\frac{3}{{\sqrt {29} }},\frac{4}{{\sqrt {29} }},\frac{2}{{\sqrt {29} }}} \right)\cdot\left( {\frac{3}{{\sqrt {29} }},\frac{4}{{\sqrt {29} }},\frac{2}{{\sqrt {29} }}} \right)} $ $||{{\bf{r}}_1}'\left( s \right)|| = \sqrt {\frac{{29}}{{29}}} = 1$ Thus, it is verified that ${{\bf{r}}_1}'\left( s \right)$ has unit speed. Hence, ${{\bf{r}}_1}\left( s \right)$ is an arc length parametrization.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.