Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 726: 26

Answer

The arc length parametrization is ${{\bf{r}}_1}\left( s \right) = \left( {\frac{s}{{\sqrt {17} }},\frac{{4s}}{{\sqrt {17} }} + 9} \right)$

Work Step by Step

Setting $t=x$, the line $y=4x+9$ can be parametrized by ${\bf{r}}\left( t \right) = \left( {t,4t + 9} \right)$. The derivative is ${\bf{r}}'\left( t \right) = \left( {1,4} \right)$. Evaluate the arc length function $s\left( t \right) = \mathop \smallint \limits_0^t ||{\bf{r}}'\left( u \right)||{\rm{d}}u$ $s\left( t \right) = \mathop \smallint \limits_0^t \sqrt {\left( {1,4} \right)\cdot\left( {1,4} \right)} {\rm{d}}u$ $s\left( t \right) = \sqrt {17} t$ The inverse of $s\left( t \right)$ is $t = \frac{s}{{\sqrt {17} }}$. Substituting $t$ in ${\bf{r}}\left( t \right) = \left( {t,4t + 9} \right)$ gives ${{\bf{r}}_1}\left( s \right) = \left( {\frac{s}{{\sqrt {17} }},\frac{{4s}}{{\sqrt {17} }} + 9} \right)$ Thus, the arc length parametrization is ${{\bf{r}}_1}\left( s \right) = \left( {\frac{s}{{\sqrt {17} }},\frac{{4s}}{{\sqrt {17} }} + 9} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.