Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 726: 22

Answer

General formula for the length of a helix: $s = \sqrt {{{\left( {2\pi NR} \right)}^2} + {h^2}} $

Work Step by Step

In Exercise 21, we obtain the parametrization of a helix of radius $R$ and height $h$ that makes $N$ complete turns, given by ${\bf{r}}\left( t \right) = \left( {R\cos \left( {\frac{{2\pi Nt}}{h}} \right),R\sin \left( {\frac{{2\pi Nt}}{h}} \right),t} \right)$ ${\ \ }$ for $0 \le t \le h$ The derivative is ${\rm{r}}'\left( t \right) = \left( { - \frac{{2\pi N}}{h}R\sin \left( {\frac{{2\pi Nt}}{h}} \right),\frac{{2\pi N}}{h}R\cos \left( {\frac{{2\pi Nt}}{h}} \right),1} \right)$ So, $||{\rm{r}}'\left( t \right)|{|^2} = {\left( { - \frac{{2\pi N}}{h}R\sin \left( {\frac{{2\pi Nt}}{h}} \right)} \right)^2}$ $ + {\left( {\frac{{2\pi N}}{h}R\cos \left( {\frac{{2\pi Nt}}{h}} \right)} \right)^2} + {1^2}$ $||{\rm{r}}'\left( t \right)|{|^2} = {\left( {\frac{{2\pi NR}}{h}} \right)^2} + 1$ Thus, the length of the helix is $s = \mathop \smallint \limits_0^h \sqrt {{{\left( {\frac{{2\pi NR}}{h}} \right)}^2} + 1} {\rm{d}}t = h\sqrt {{{\left( {\frac{{2\pi NR}}{h}} \right)}^2} + 1} $ $s = h\sqrt {\frac{{{{\left( {2\pi NR} \right)}^2} + {h^2}}}{{{h^2}}}} = \sqrt {{{\left( {2\pi NR} \right)}^2} + {h^2}} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.