Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.7 Cylindrical and Spherical Coordinates - Exercises - Page 700: 75

Answer

Rectangular coordinates of Sydney: $x = - 4618.84$ km $y = 2560.26$ km $z = - 3562.06$ km Rectangular coordinates of Bogotá: $x = 1723.67$ km $y = - 6111.69$ km $z = 503.11$ km

Work Step by Step

1. Sydney, Australia (34$^\circ $ S, 151$^\circ $ E) We have the latitude 34$^\circ $ S and the longitude 151$^\circ $ E. First we find the spherical angles $\left( {\theta ,\phi } \right)$ for Sydney: Sydney's latitude is south of the equator, so $34^\circ = \phi - 90^\circ $ and $\phi = 124^\circ $. Since the longitude of Sydney lies to the east of prime meridian, $\theta = 151^\circ $. So, $\left( {\theta ,\phi } \right) = \left( {151^\circ ,124^\circ } \right)$. Using the relations between rectangular and spherical coordinates: $x = \rho \sin \phi \cos \theta $ $y = \rho \sin \phi \sin \theta $ $z = \rho \cos \phi $ where in this case $\rho = 6370$, we get $x = 6370\sin 124^\circ \cos 151^\circ = - 4618.84$ km $y = 6370\sin 124^\circ \sin 151^\circ = 2560.26$ km $z = 6370\cos 124^\circ = - 3562.06$ km 2. Bogotá, Colombia (4$^\circ $32' N, 74$^\circ $ 15' W) We have the latitude $4^\circ 32' = 4.53^\circ $ N and the longitude $74^\circ 15' = 74.25^\circ $ W. Since the latitude of Bogotá is north of the equator, $4.53^\circ = 90^\circ - \phi $, So, $\phi = 85.47^\circ $. Since 74.25$^\circ $ W refers to 74.25$^\circ $ in the negative $\theta$ direction, we have $\theta = 360^\circ - 74.25^\circ = 285.75^\circ $. So, $\left( {\theta ,\phi } \right) = \left( {285.75^\circ ,85.47^\circ } \right)$. Using the relations between rectangular and spherical coordinates: $x = \rho \sin \phi \cos \theta $ $y = \rho \sin \phi \sin \theta $ $z = \rho \cos \phi $ where in this case $\rho = 6370$, we get $x = 6370\sin 85.47^\circ \cos 285.75^\circ = 1723.67$ km $y = 6370\sin 85.47^\circ \sin 285.75^\circ = - 6111.69$ km $z = 6370\cos 85.47^\circ = 503.11$ km
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.