Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.7 Cylindrical and Spherical Coordinates - Exercises - Page 700: 37

Answer

$(\frac{3\sqrt 3}{2}, \frac{3}{2}, -3\sqrt 3)$

Work Step by Step

We have the spherical coordinates: $(\rho, \theta, \phi)=(6,\frac{\pi}{6}, \frac{5\pi}{6})$ $x= \rho \sin\phi \cos \theta=6\sin\frac{5\pi}{6}\cos \frac{\pi}{6}$ $=6\times\sin(\pi-\frac{\pi}{6})\times\frac{\sqrt 3}{2}$ $=6\times\sin \frac{\pi}{6}\times\frac{\sqrt 3}{2}$ ( As $\sin(\pi-x)=\sin x$) $=6\times\frac{1}{2}\times\frac{\sqrt 3}{2}=\frac{3\sqrt 3}{2}$ $y=\rho\sin\phi\sin\theta=6\sin\frac{5\pi}{6}\cos \frac{\pi}{6}$ $=6\times\frac{1}{2}\times\frac{1}{2}=\frac{3}{2}$ $z=\rho\cos\phi= 6\times\cos \frac{5\pi}{6}$ $=6\times\cos(\pi-\frac{\pi}{6})$ $=6\times(-\cos \frac{\pi}{6})$ ( As $\cos (\pi-x)=-\cos x$) $=6(-\frac{\sqrt 3}{2})=-3\sqrt 3$ Therefore, the rectangular coordinates are $(x,y,z)=(\frac{3\sqrt 3}{2}, \frac{3}{2}, -3\sqrt 3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.