Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.4 The Cross Product - Exercises - Page 678: 59

Answer

The solution is $\left( {x,y,z} \right) = \left( {k,k,1 + k} \right)$, where $k$ is any number. This implies that there are infinitely many solutions.

Work Step by Step

Since ${\bf{X}} = \left( {x,y,z} \right)$ and $\left( {1, - 1,0} \right) = {\bf{i}} - {\bf{j}}$, so $\left( {1,1,1} \right) \times {\bf{X}} = \left( {1, - 1,0} \right)$ $\left( {1,1,1} \right) \times \left( {x,y,z} \right) = {\bf{i}} - {\bf{j}}$ Let us consider the left-hand side of the equation. Using the formula for the cross product, we have $\left( {1,1,1} \right) \times \left( {x,y,z} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 1&1&1\\ x&y&z \end{array}} \right|$ Since $\left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 1&1&1\\ x&y&z \end{array}} \right| = \left( {\begin{array}{*{20}{c}} 1&1\\ y&z \end{array}} \right){\bf{i}} - \left( {\begin{array}{*{20}{c}} 1&1\\ x&z \end{array}} \right){\bf{j}} + \left( {\begin{array}{*{20}{c}} 1&1\\ x&y \end{array}} \right){\bf{k}}$ So, $\left( {1,1,1} \right) \times \left( {x,y,z} \right) = \left( {z - y} \right){\bf{i}} - \left( {z - x} \right){\bf{j}} + \left( {y - x} \right){\bf{k}}$ and $\left( {z - y} \right){\bf{i}} - \left( {z - x} \right){\bf{j}} + \left( {y - x} \right){\bf{k}} = {\bf{i}} - {\bf{j}}$ Thus, we obtain a system of equations: $z-y=1$, ${\ \ }$ $z-x=1$, ${\ \ }$ $y-x=0$. The third equation above gives $x=y$. If we write $k=x=y$. then the solution is $\left( {x,y,z} \right) = \left( {k,k,1 + k} \right)$, where $k$ is any number. This implies that there are infinitely many solutions.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.