Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.4 The Cross Product - Exercises - Page 678: 44

Answer

$area = \sqrt {69} $

Work Step by Step

We have $P = \left( {1,1,5} \right)$, ${\ \ }$ $Q = \left( {3,4,3} \right)$, ${\ \ }$ and ${\ \ }$ $R = \left( {1,5,7} \right)$ Write ${\bf{u}} = \overrightarrow {PR} = \left( {1,5,7} \right) - \left( {1,1,5} \right) = \left( {0,4,2} \right)$ and ${\bf{v}} = \overrightarrow {PQ} = \left( {3,4,3} \right) - \left( {1,1,5} \right) = \left( {2,3, - 2} \right)$ Using Eq. (7), the area of the triangle with vertices $P = \left( {1,1,5} \right)$, $Q = \left( {3,4,3} \right)$, and $R = \left( {1,5,7} \right)$ is $area = \frac{{||{\bf{u}} \times {\bf{v}}||}}{2}$ First, we evaluate the vector product ${\bf{u}} \times {\bf{v}}$: ${\bf{u}} \times {\bf{v}} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 0&4&2\\ 2&3&{ - 2} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 4&2\\ 3&{ - 2} \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} 0&2\\ 2&{ - 2} \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} 0&4\\ 2&3 \end{array}} \right|{\bf{k}}$ ${\bf{u}} \times {\bf{v}} = - 14{\bf{i}} + 4{\bf{j}} - 8{\bf{k}}$ So, $area = \frac{{||{\bf{u}} \times {\bf{v}}||}}{2} = \frac{1}{2}\sqrt {{{\left( { - 14} \right)}^2} + {4^2} + {{\left( { - 8} \right)}^2}} = \sqrt {69} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.