Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.4 The Cross Product - Exercises - Page 678: 58

Answer

(a) Since $\overrightarrow {PQ} \times \overrightarrow {PR} = {\bf{0}}$, therefore the points $P$, $Q$, $R$ are collinear. (b) $\overrightarrow {PQ} $ and $\overrightarrow {PR} $ form a plane containing them. The vector normal to this plane is $\overrightarrow {PQ} \times \overrightarrow {PR} = 210{\bf{i}} + 75{\bf{j}} - 45{\bf{k}}$. (c) $\overrightarrow {PQ} $ and $\overrightarrow {PR} $ form a plane containing them. The vector normal to this plane is $\overrightarrow {PQ} \times \overrightarrow {PR} = 13{\bf{i}} - 2{\bf{j}} + 6{\bf{k}}$.

Work Step by Step

Recall from the result of Exercise 57: three points $P$, $Q$, $R$ are collinear (lie on a line) if and only if $\overrightarrow {PQ} \times \overrightarrow {PR} = {\bf{0}}$. (a) We have $P = \left( {2,1,0} \right)$, $Q = \left( {1,5,2} \right)$, $R = \left( { - 1,13,6} \right)$. So, $\overrightarrow {PQ} = \left( {1,5,2} \right) - \left( {2,1,0} \right) = \left( { - 1,4,2} \right),$, $\overrightarrow {PR} = \left( { - 1,13,6} \right) - \left( {2,1,0} \right) = \left( { - 3,12,6} \right)$ Evaluate $\overrightarrow {PQ} \times \overrightarrow {PR} $: $\overrightarrow {PQ} \times \overrightarrow {PR} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ { - 1}&4&2\\ { - 3}&{12}&6 \end{array}} \right|$ $\overrightarrow {PQ} \times \overrightarrow {PR} = \left| {\begin{array}{*{20}{c}} 4&2\\ {12}&6 \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} { - 1}&2\\ { - 3}&6 \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} { - 1}&4\\ { - 3}&{12} \end{array}} \right|{\bf{k}}$ $\overrightarrow {PQ} \times \overrightarrow {PR} = {\bf{0}}$ Since $\overrightarrow {PQ} \times \overrightarrow {PR} = {\bf{0}}$, therefore the points $P$, $Q$, $R$ are collinear. (b) We have $P = \left( {2,1,0} \right)$, $Q = \left( { - 3,21,10} \right)$, $R = \left( {5, - 2,9} \right)$. So, $\overrightarrow {PQ} = \left( { - 3,21,10} \right) - \left( {2,1,0} \right) = \left( { - 5,20,10} \right)$, $\overrightarrow {PR} = \left( {5, - 2,9} \right) - \left( {2,1,0} \right) = \left( {3, - 3,9} \right)$ Evaluate $\overrightarrow {PQ} \times \overrightarrow {PR} :$: $\overrightarrow {PQ} \times \overrightarrow {PR} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ { - 5}&{20}&{10}\\ 3&{ - 3}&9 \end{array}} \right|$ $\overrightarrow {PQ} \times \overrightarrow {PR} = \left| {\begin{array}{*{20}{c}} {20}&{10}\\ { - 3}&9 \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} { - 5}&{10}\\ 3&9 \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} { - 5}&{20}\\ 3&{ - 3} \end{array}} \right|{\bf{k}}$ $\overrightarrow {PQ} \times \overrightarrow {PR} = 210{\bf{i}} + 75{\bf{j}} - 45{\bf{k}}$ Since $\overrightarrow {PQ} \times \overrightarrow {PR} \ne {\bf{0}}$, $\overrightarrow {PQ} $ and $\overrightarrow {PR} $ form a plane containing them. The vector normal to this plane is $\overrightarrow {PQ} \times \overrightarrow {PR} = 210{\bf{i}} + 75{\bf{j}} - 45{\bf{k}}$. (c) We have $P = \left( {1,1,0} \right)$, $Q = \left( {1, - 2, - 1} \right)$, $R = \left( {3,2, - 4} \right)$. So, $\overrightarrow {PQ} = \left( {1, - 2, - 1} \right) - \left( {1,1,0} \right) = \left( {0, - 3, - 1} \right),$, $\overrightarrow {PR} = \left( {3,2, - 4} \right) - \left( {1,1,0} \right) = \left( {2,1, - 4} \right)$ Evaluate $\overrightarrow {PQ} \times \overrightarrow {PR} $: $\overrightarrow {PQ} \times \overrightarrow {PR} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 0&{ - 3}&{ - 1}\\ 2&1&{ - 4} \end{array}} \right|$ $\overrightarrow {PQ} \times \overrightarrow {PR} = \left| {\begin{array}{*{20}{c}} { - 3}&{ - 1}\\ 1&{ - 4} \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} 0&{ - 1}\\ 2&{ - 4} \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} 0&{ - 3}\\ 2&1 \end{array}} \right|{\bf{k}}$ $\overrightarrow {PQ} \times \overrightarrow {PR} = 13{\bf{i}} - 2{\bf{j}} + 6{\bf{k}}$ Since $\overrightarrow {PQ} \times \overrightarrow {PR} \ne {\bf{0}}$, $\overrightarrow {PQ} $ and $\overrightarrow {PR} $ form a plane containing them. The vector normal to this plane is $\overrightarrow {PQ} \times \overrightarrow {PR} = 13{\bf{i}} - 2{\bf{j}} + 6{\bf{k}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.